o SYNTEC

gl TECHNOLOGY CO.,LTD.

OpenCNC_Macro Development Manual.

BEH HER : 2021-08-05
e B ER : 2021-06-02



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

1 Preface

In order to increase the flexibility of the controller application, Syntec controller provides MACRO program editing
functions. When the processing program is declared in the MACRO format, specific mathematical functions are
applicable like other programming languages. In this way, in addition to the original movement and compensation
command functions, logical judgment and mathematical calculation functions are also included.

Preface - 2



2 File Format

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

The first line of the program should be declared as the title line with "%" and add the keyword "@MACRO".
Otherwise, the file will be regarded as a normal ISO format file, and user is not able to to use the full functionality of
the MACRO. In addition, each line of the program content must be followed by a semicolon ";", but there are
exceptions to some of the syntax, refer to the syntax description.

ISO format

Do not support MACRO

syntax.

(While there are syntax

can not be complied
correctly, there may
be alarm "COM-003."

With or without
semicolon at the end
of line is acceptable.

While using "(...)",
the...isregarded as
comment.

Programming
according to Pr3201.

Note:

MACRO format

Support full functionality of MACRO syntax.

1. Exceptthe special syntax, every line should end with semicolon.

2. Ifthe line does not end with semicolon, CNC combine it together with the next line
when checking the syntax. If there is no alarm, the NC program run normally;
otherwise, there comes the alarm "COM-008," which is "line does not end with

semicolon."
Example:

Original what CNC read Description

Alarm %@MACRO %@MACRO Due to wrong syntax after
#1:=SIN(100)  #1:=SIN(100)Go1  combined, thereis alarm,

Y100.- COM-008.

G01Y100.; ”
M99: M99;

No alarm %@MACRO %@MACRO Due to correct syntax even
GO1 X100. Gol after combined, there is

no alarm.

G01Y100,; X100. G01Y100,; The spindle moves to
M99; M99; X100.Y100.

While using "(*...*)", the ... is regarded as comment.

Programming according to Lathe C-Type.

1. Itisrecommended that multi-path style(including $1 and $2) might not be used in NC Program which is
called as sub-program or a macro.

File Format - 3



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Should it be inevitable, the size of the program must be less than 58.6KB. Otherwise, there comes the alarm
"COR-203 Illegal NC Program format."
. Not support the sub-program, which is in MACRO format, using the multi-path style (including $1, $2).
. Ifthe size of file is larger than 58.6 KB, it would not support the syntax like IF, CASE, REPEAT, FOR, WHILE,
which are longer than one line. If these syntax are used, there will be alarms.( Syntax Compiler Alarm - COM )
. Only ASCII characters are acceptable in NC files. Using non-ASClI characters is thus unacceptable and will
trigger COM-027 Invalid character.
Note: Listed below are the special cases in which non-ASClI characters are considered acceptable:

a. Comment.

b. Arguments of MACRO functions that are of string type.

File Format - 4



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

3 Block Format

The writing format of the block (one line) is instructed as follows:

/ N G X Y z A B c | J K F S T D M

/ Block selective jump function. C41 in PLC must coordinate as well;

does not support "function syntax" and "variable calculation."

N The block sequence No., which must be written at the head of a block, and the
MACRO command or variable designation cannot be written in the same line.

G Function specification code, need to be written after N code

X The X axis movement command, or the expansion of the G code, must be written
after the G code.

Y The Y axis movement command, or the expansion of the G code, must be written
after the G code.

Z The Z axis movement command, or the expansion of the G code, must be written
after the G code.

A The A axis movement command, or the expansion of the G code, must be written
after the G code.

B The B axis movement command, or the expansion of the G code, must be written
after the G code.

C The C axis movement command, or the expansion of the G code, must be written

after the G code.

I The radius command in the X direction or the argument of the expansion G code,
must be written after the G code.

J The radius command in the Y direction or the argument of the expansion G code,
must be written after the G code.

K The radius command in the Z direction or the argument of the expansion G code,
must be written after the G code.

F Block feed rate, or the argument of expansion G code.

Block Format - 5



M

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Spindle rotation speed, or the argument of expansion G code.
Tool selection function, or the argument of expansion G code.
Tool compensation function, or the argument of expansion G code.

Auxiliary, or the argument of expansion G code.

Core interpretation processing order (1. first ~10. last):

=

—
e

Note:

WoNo AW

Modal G code(G15. G17. G70...), expansion G code macro(G73, G84...)
M code macro, T code macro

S code

F code

H code

D code

T code

M code

B code

Interpolated G code (GO, Gl...) ,functional G code (G4, G51_ G68...)

. The format not mentioned above is introduced by the relevant G code in the form of an argument.

Generally, the "GETARG" function is used in the sub-program to read the argument. The rules, instructing
the form of argument in the main program (parent program), are as follows:

a. ForparameterD, E,H,1,J,K,L, M, P, Q, R, T, argument should be attached directly, such as "G101
X30.Y40. D50. ;". If parameter is followed by a symbol first then argument, such as "G101 X30. Y40.
D1=50. ;", there is an alarm.

b. ForparameterA,B,C,F,S,U,V,W,X,Y, Z, in addition to attaching argument directly, user can also
attach a number before the argument, for example "G101 X30. Y40 . Z1=50. ;"

c. Right after the above action instructions, only the value or the variable stored as numeric can be
used. Otherwise, the system error may be caused by the coding limitation from program
interpretation. This misuse is not under the range of protection.

Block Format - 6



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

4 Operator

Operator Sign Operating order
Brackets 011 1
Function assignment Identifier 2
Negative - 3
Complement NOT 3
Multiplication sign * 4
Divisor / 4
Modulus (remainder) MOD 4
Plus + 5
Minus - 5
Comparison <> <=>= 6
Equal = 7
Not equal <> 8
Boolean “and” &,AND 9
Boolean “Mutually exclusive” XOR 10
Boolean “or” OR 11
Note 1:

When using the "/" component (division), be aware that if the numerator and denominator are integers, the result is
still an integer. The difference between an integer and a non-integer result is whether user adds the decimal point
or not.

example:

« The numeratoris a non-integer: 1. /2=0.5
+ The denominator is a non-integer:1/2.0=0.5
+ The numerator and denominator are integers: 1/2=0

Operator - 7



HLFR 7= fB/Machine Tool Products - OpenCNC_Macro Development Manual.

« The number in the bracket is an integer: (1/2)*1.0=0
Note 2:

The MOD operator (modulo) is only applicable to the numeric type “Long”. If the numeric type is “Double”, the
following alarm message shows up.

example:
%@MACRO
@1:=4.MOD 3;
M99;

|Coordinate 42 ThelNcPrograml2: Logic operand must be integer or vacant

Operator - 8



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

5 Language Instructions

5.1 Variable Designation

Variable Designation

Syntax
Explanation

Example 1:

Direct setting

Example 2:

Indirect setting

Remarks

5.2 GOTO

GOTO
Syntax

Explanation

<variable> := <description>;

Designate variable content

@1:=123;

#1 := 456;

#10:="12"; // The local variable #10 content is 12
@10:="12"; // public variable @10 content is 12849

#1:=123;
@[#1] :=567; // @123=567
@[#1+7]:=890; // @130=890

1.The "12" in the first example is a string, indicating that the string is stored in
the variable. When the public variable is stored, the controller will translate the
string into ASCII. For the local variable, the translation will not be executed.

2. To correctly read the contents of the string stored in the public variable, use

the SCANTEXT function.

3.Inthe example 2, please notice that it's the "square bracket"

GOTO n;

The use of GOTO should be paired up with block sequence code(n). CNC would

jump to the specified N-number and execute from that line. If there are two same

N-numbers in the program, the first N-line number in the program will take

precedence than the second one.

Language Instructions - 9



Examples

Remarks

5.3 CASE

CASE

Syntax

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

%@MACRO
#1:=1;
#2:=10;

IF(#1=1)THEN

GOTO #2;
END_IF;
IF(#1=2)THEN

GOTO 100;
END_IF;
N10;
GO01 G90 X50. YO. F1000;
M30;
N100;
GO01 G90 X0. Y50. F1000;
M30;

When using the loop function such as REPEAT/WHILE/FOR/GOTO, user should pay
attention to the problem of infinite loop. When this occurs, the human machine
interface, which is screen, may be locked or the machining program may crash.

It is recommended to add the SLEEP() function avoiding the crash resulting
from the infinite loop. With SLEEP() function, there is still chance to operate the

human-machine interface to stop the program execution.

CASE <condition variable> OF

<variable>:
<statement List>
<variable>, <variable>:
<statement list>

<variable>, <variable>, <variable>:

<statement list>
ELSE

<statement list>
END_CASE;

Language Instructions - 10



Explanation

Examples

54 IF

Syntax

Explanation

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Multi-conditional judgment. CNC, according to the condition variable, executes
different program blocks. Please note that the "variable" content must be an

integer which is greater than or equal to zero.

%@MACRO
#1:=1;

GO01 G90 X0. Y0. F1000;
CASE #1 OF
1:

X(1.0%#1) Y(1.0*#1);

X(2.0*#1) Y(2.0*#1);
3,4,5:

X(3.0*#1) Y(3.0*#1);
ELSE

X(4.0*#1) Y(4.0*#1);
END_CASE;
M30;

IF <condition> THEN
<statement list>

ELSEIF <condition> THEN
<statement list>

ELSE

<statement list>

END_IF;

IF condition judgment

Language Instructions - 11



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Examples %@MACRO
#1:=3.0;
G01 G90 X0. YO. F1000;
IF#1=1THEN
X(1.0*#1) Y(1.0*#1);
ELSEIF #1 =2 THEN
X(2.0*#1) Y(2.0*#1);
ELSEIF #1 =3 THEN
X(3.0*#1) Y(3.0*#1);

ELSE
X(4.0*#1) Y(4.0*#1);
END_IF;
M30;
5.5 Repeat

REPEAT

Syntax REPEAT
<statement List>
UNTIL <condition>
END_REPEAT;

Explanation REPEAT loop control

Language Instructions - 12



Examples

Remarks

5.6 While

WHILE

Syntax

Explanation

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

%@MACRO

#10:=30.;

#11:=22.5,;

#12:=#10/2;

#13:=#11/2;

#14:=2.0;

#15:=1.5;

GO01 G90 X#12 Y#13 F1000;

REPEAT
GOO X(#12+#14) Y(#13+#15);
GO1 X(#12+#14) Y(#13-#15);
GO1 X(#12-#14) Y(#13-#15);
GO1 X(#12-#14) Y(#13+#15);
GO1 X(#12+#14) Y(#13+#15);
#14 :=#14+2.0;
#15:=#15+ 1.5;

UNTIL (#14 > #12) OR (#15 > #13) END_REPEAT,;

M30;

When using the loop function such as REPEAT/WHILE/FOR/GOTO, user should pay
attention to the problem of infinite loop. When this occurs, the human machine
interface, which is screen, may be locked or the machining program may crash.

It is recommended to add the SLEEP() function avoiding the crash resulting
from the infinite loop. With SLEEP() function, there is still chance to operate the

human-machine interface to stop the program execution.

WHILE <condition> DO
<statement list>

END_WHILE;

WHILE loop control

Language Instructions - 13



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Examples %@MACRO

#10:=30.;

#11:=22.5,;

#12:=#10/2;

#13:=#11/2;

#14:=2.0;

#15:=1.5;

GO01 G90 X#12 Y#13 F1000;

WHILE (#14 <=#12) AND (#15 <= #13) DO
GOO X(#12+#14) Y(#13+#15);
GO1 X(#12+#14) Y(#13-#15);
GO1 X(#12-#14) Y(#13-#15);
GO1 X(#12-#14) Y(#13+#15);
GO1 X(#12+#14) Y(#13+#15);
#14 :=#14+2.0;
#15:=#15+ 1.5;

END_WHILE;

M30;

Remarks When using the loop function such as REPEAT/WHILE/FOR/GOTO, user should pay
attention to the problem of infinite loop. When this occurs, the human machine
interface, which is screen, may be locked or the machining program may crash.

It is recommended to add the SLEEP() function avoiding the crash resulting
from the infinite loop. With SLEEP() function, there is still chance to operate the
human-machine interface to stop the program execution.

5.7 For

FOR

Language Instructions - 14



Syntax

Explanation

Examples

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

FOR <variable 1> :=<Description 1> TO <Description 2> BY <Description 3> DO

<statement list>
END_FOR;

Variable 1: The variable that controls the number of loops

Description 1: The start number of the loop count, which can be a numerical value or

an arithmetic expression

Description 2: The terminated number of the loop count, which can be a numerical

value or an arithmetic expression.

Description 3: The added number to the current loop count after each loop, which can

be a numerical value or an arithmetic expression.

Statement list: execution in each loop

FOR loop control

%@MACRO
#10:=30.;
#11:=22.5,;
#12 :=#10/2;
#13:=#11/2;
#14:=2.0;
#15:=1.5;

GO1 G0 X#12 Y#13 F1000;
FOR#6:=0TO 3 BY 1.0 DO
GOO X(#12+#14) Y(#13+#15);
GO1 X(#12+#14) Y(#13-#15);
GO1 X(#12-#14) Y(#13-#15);
GO1 X(#12-#14) Y(#13+#15); GO1 X(#12+#14) Y(#13+#15);

#14:=#14+2.0;
#15:=#15+ 1.5;
END_FOR;

M30;

Language Instructions - 15



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Remarks 1. When using the loop function such as REPEAT/WHILE/FOR/GOTO, user should pay
attention to the problem of infinite loop. When this occurs, the human machine
interface, which is screen, may be locked or the machining program may crash.

2. ltisrecommended to add the SLEEP() function avoiding the crash resulting
from the infinite loop. With SLEEP() function, there is still chance to operate the
human-machine interface to stop the program execution.

3. Do NOT use the command whitch will jump out and in FOR loop ( e.g: Complex
Canned Cycle (G72-G78), using GOTO jump out loop and jump in again), . M98 H_,
it will cause the incorrect added number(<Description 3>).
example:

// FOR #10 will add 5 in each loop cycle
%@MACRO FOR #10:=1 TO 100 BY 1 DO

GOTO 12;

N13;

END_FOR;

M30;

N12;
MOO;
@1:=@1+5;
GOTO 13;
M99;

5.8 EXIT

EXIT
Syntax EXIT

Explanation Interrupt loop, jump out of loop control

Language Instructions - 16



Examples

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

%@MACRO

#10:=30.;

#11:=22.5,;

#12 :=#10/2;

#13:=#11/2;

#14 :=2.0;

#15:=1.5;

#16 := 1.0;

GO01 G90 X#12 Y#13 F1000;

FOR#6:=0TO3BY1..0DO
IF((#14 =4) & (#16 =1)) THEN

EXIT;

END_IF;
GOO X(#12+#14) Y(#13+#15);
GO1 X(#12+#14) Y(#13-#15);
GO1 X(#12-#14) Y(#13-#15);
GO1 X(#12-#14) Y(#13+#15);
GO1 X(#12+#14) Y(#13+#15);
#14 :=#14+2.0;
#15:=#15+1.5;

END_FOR;

M30;

5.9 Program Annotation

Program Annotation

Syntax

Ex

Example 1

Single line annotation

(* <statement list>*)

// <statement list>

Program Annotation(comment)

%@MACRO
G00 G90 X0. YO0.; // homing
M30;

Language Instructions - 17



Example 2

Block annotation

Remark

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

%@MACRO

(*

This block is the annotation area
Regardless of the content, it does not affect program execution.
%)

GO0 G90 X0. YO.;

GO0 G90 X10.Y0.;

GO0 G90 X10.Y10,;

GO0 G90 X0. Y10.;

GO0 G90 X0. YO.;

M30;

If a text that is an annotation is added to the statement list, system error may
occur due to the limitation while interpreting the code. This misuse is not under
the protection of the controller.

5.10 Area of Execution Program

Area of Execution Program

Syntax

Explanation

Example 1

Example 2

%
Execution Program

%

1. While thereis "%...%" in the program, the execution program between
two % will be executed by CNC. For those program prior to the first %
and after the second % will not be executed.

G91 GOO X10.

%

G91 GOOo Y10.

%

G91 GO0 Z10.

M30

//After "Cycle Start", only Y coordinate move to "10.".

G91 GO0 X10.

%

G91 GO0 Y10.

G91 GO0 Z10.

M30

//After "Cycle Start", Y and Z coordinate move to "10." and X stay unmoved.

Language Instructions - 18



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

6 MACRO Read/Process Flow

Icon Explanation

[] The following explains the movements of each line of the
parent program (main program): (the program in the left box)

+ N1: Set the coordinate system to G54 and move in absolute
mode G90

+ N2:Call macro G0201 and get the content in argument X1
with GETARG function

#1 . =GETARG(X1)

After entering G0201, store the argument X1 into the
local variable #1

#10 . =#1004

Back up state G90/G91 with #10

G91 GOO Y#1

Y coordinate moves in increment of 10mm by GO0
G#10

Restore state G90/G91

M99

Return to parent program

+ N3:Since the last interpolation mode before leaving G0201
is GO0, in this block, the X coordinate still moves by GO0

+ N4: Call the macro G0202 and the value of argument X will
be stored in #24

#1 . =STD(#24,#1600)

After entering G0202, store the argument X into the
local variable #1

#10 . =#1004

Back up state G90/G91 with #10

G91 GOO Y#1

Y axis moves in increment of -10mm by G00
"G#10"

Restore state G90/G91

" #1000 : =202"

Set the interpolation mode to 202

M99

Return to the parent program

« N5: Since the interpolation mode is stored as 202 before
leaving G0202, the system will call G0202 again when this
block is executed.

+ N6: End of program

MACRO Read/Process Flow - 19



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

7 MACRO Writing Note

« Itisrecommended to use local variables (Local Variables, #1 ~ #400) in one MACRO and to use global variable

when user need to pass value between MACROs (Global Variables, @1 ~ @165535).

« When executing MACRO, the user's data is passed by arguments (A_, B_, ..., Z_, X1=,Y1=, ...), and the

arguments are connected to the local variables. The following table relates the arguments and the local
variables.

« For expansion argument address, such as X1, use the function "GETARG" to read the values.

Argumen  Corresponded Argument Corresponded Argument Corresponded
t Variable Variable Variable

A #1 J #5 T #20

B #2 K #6 u #21

C #3 L #12 Vv #22

D #7 M #13 W #23

E #8 P #16 X #24

F #9 Q #17 Y #25

H #11 R #18 Z #26

| #4 S #19 X1 GETARG(X1)

Modal Variables ( #2001 ~ #2100, #3001 ~ #3100) will return to the VACANT state when the system is reset, so
it can be applied to the timing of data exchange between multiple MACROs to save the use of variable
resources.
If a default initial value is required for MACRO, Customer Parameter is recommneded (#4001 ~ #4100, #5001
~#5100).
When the MACRO sub-routine (sub-program) is executed, if the mode G code is changed (G91/G90, G40/G41/
G42, ..., etc.), please back up the current state, and restore the original mode G state before leaving the
MACRO.
If user want to keep the current MACRO interpolation mode (#1000) after leaving MACRO, it is recommended
to designate #1000 as the MACRO number before leaving MACRO. As long as there is single block of the axial
displacement, the system will automatically call this MACRO without specifying it again.

« Theinterpolation mode will be automatically rewritten when G00/G01/G02/G03/G31/G33 show up or

#1000 change.

For length or angle arguments, use the STD function to normalize the unit before operation to match the
usage habits of machine tool.

Change to the setting of coordinate system is strictly forbidden, such as G92/G54/G52 which are relevant to
coordinate system. Otherwise, the simulation would be useless.

When machining, the core will pre-interpret the MACRO content, so the MACRO progress is ahead of the
practical G/M code. If the variable specification or the data reading needs to synchronize with the G/M code,

MACRO Writing Note - 20



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

please add WAIT function before the variable specification or the data reading to ensure the movement is
correct.

The MACRO program must be added with "M99;" to return to the main program (parent program).

Develop good habits, add more comments to the program, this will increase program readability, and help
subsequent maintenance and troubleshooting.

7.1 Login G Code MACRO

Developers could, according to the needs, add G code macros other than the standard G code, and could
also customize the standard G code.

Use the [ Pr3701~3710 Login G Code Call Macro ] setting to log in the standard G code user want to
customize. When the corresponding G code is executed in the program, the standard G code will not be
executed but the customized G code Macro.

The following table introduces the setting value of [ Pr3701~3710 Login G Code Call Macro ] and the open
customized standard G code.

Pr3701 Standard G Code File Name of G Code Macro
0 none none
-1 GO0 G0000
1 GO1 G0001
2 G02 G0002
3 G03 G0003
4 G53 G0053
5 G40 G0040
6 G41 G0041
7 G42 G0042
8 G43 G0043
9 G44 G0044
10 G49 G0049

+ The following are the operating specifications for the G code macro

+ Macro feature is treated as G code macro feature

+ All G codes in the login G code macro are standard G codes.

+ Inold standard login G code macro, the only usable funtion is G900000, which executes GOO.

+ Thelogin G code macro has the same inheritance function as the general interpolation mode (except
G53)

MACRO Writing Note - 21



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

« Example:
G00 X100.
Y100.
Where Y100. will also execute the GO0 macro, and can read the occupied Y argument

» Thelogin G code macro is not different from the general interpolation G code in interpretation, and
can be completely replaced by it.
« If user change the interpolation mode in the login G code macro, be sure to restore the interpolation
mode before leaving the login macro.
« For example, if user login GO0 as the login G code macro
In the macro G000O, if user change the interpolation state to G01, user need to change the
interpolation mode back to GO0 before leaving GO000 in order to avoid the state disorder.

+ The login G code macro will not work when it encounters the following instructions.
+ LatheG7.1
+ Lathe G12.1
« Lathe, A
« Lathe,R
« Lathe, C
« Lathe All machining cycle instructions
+ Mill All machining cycle instructions
+ T code macro

+ Use of G53 is the same as the rest of G code macro except the non-interpolation mode.

« Version revision

Version Revision

~Before Some specifications are undefined clearly and may result in
differences between new and old versions.

10.114.50 + Login G code to call macro, in the machining
program, the interpretation order of the G code
macro is same as general interpolation G code.

« Do not support changing the interpolation mode to
900000 in G code macro(#1000 := 900000).

10.116.16A_ 10.116.17 G53 is able to be replaced by customized MACRO (G0053)

10.118.22F, 10.118.26 G40, G41, G42 is able to be replaced by customized MACRO
(G0040, G0041, G0042)

10.118.45 G43, G44, G49 is able to be replaced by customized MACRO
(G0043, G0044, G0049)

MACRO Writing Note - 22



8 Function List

Function

ABS

ACOS

ALARM

ASIN

ATAN

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Explanation

Get the absolute value
Example:

#10:=-1.1;
#1:=ABS(#10); //#1=1.1
#2:=ABS(-1.2);//#2=1.2

Calculate the acos of a value
Example:

#10:=1;
#1:=ACOS(#10); //#1=0
#2:=ACOS(-1); // #2=180

Call macro alarm
Example:

ALARM(300); // B35 E 555300554k
ALARM(301, "ALARM 301 Content");

Remark: There is limit of string length in an alarm. For Mandarin, it's 19 words ;

For English, it's 39 alphabets.

Calculate the asin of a value
Example:

#10:=1;
#1:= ASIN(#10); // #1 =90
#2:= ASIN(-1); // #2=-90

Calculate the atan of a value. The calculation result is between +90°.

Example:
#10:=1;

#1:= ATAN(#10); // #1 =45
#2 := ATAN(-1); // #2 = -45

Function List - 23



Function

ATAN2(Y, X)

AXID

CEIL

CLOSE

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Explanation

Calculate the four-quadrant atan value of Y/X. The calculation result is between
+180°.

Example:
#10:=1;
#20:=-1

#1 := ATAN2(#10, #20); // #1 =135
#2 := ATAN2(#20, #10); // #2 =-45
#3:=ATAN2(1,0);  //#3=90

Notes:

1. Valid version: 10.118.29W, 10.118.40C, 10.118.42

2. The argument X and Y must be numbers, or the alarm COR-023[Semantic
error)will be issued.

3. The argument X and Y can not be zero at the same time, or the alarm COR-004[
Operation domain error]will be issued.

Example of wrong cases:

@1 := ATAN2("1",1);// The first argument is not a number, issue COR-023 alarm.
@2 :=ATAN2(0,0); // The arguments are both zero, issue COR-004 alarm.

Inquire the axis number corresponding to the axis name. If the axis name does not
exist, the return value is blank (VACANT, #0)

Example:

Suppose the sixth axis name is Y2 (Pr326=202) and the second axis name
isY (Pr322=200).

#1:= AXID(Y); // #1=2
#2:= AXID(Y2); // #2=6

Return the smallest integer greater than or equal to a certain value
Example:

#10:=1.4;

#1:= CEIL(#10); //#1=2

#2:= CEIL(1.5);// #2=2

Close the file opened by the OPEN function, and the file will be automatically
closed after the program ends. The PRINT function will fail if the file is already
closed.

Example:

CLOSE(); // close the file

Function List - 24



Function

COoS

DBLOAD

DBSAVE

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Explanation

Calculate the cosine of a value
Example:
#10:=180;
#1:= COS(#10); //#1=-1
#2:= COS(-180); //#2=-1

Read the data of specified index from the currently loaded XML. For related
applications, please refer to the appendix.

Example:
DBOPEN("FLAT\\TABO1");
// Load FLAT\\TABO1 data file
DBLOAD(0);
// read the 0th cycle
DBLOAD(1);
// read the 1st cycle

Note: The file path to the XMLDB may be influenced by customized Action
(CUSTOMFILE_CYCLE1~5), please refer to CE AN 2N FA ST

Save the data of specified index from the currently loaded XML. For related
applications, please refer to the appendix.

EX :
1 DBOPEN( "GrinderToolTable.cyc" ); // Load
"GrinderToolTable.cyc"
2
3 DBLOAD( 0 ); // Load the
0-th datum from cyc file
4 DBSAVE( 0 ); // Save the
0-th datum to cyc file
Notes :

1. The file path for XMLDB can be changed by Customized Actions (CUSTOMFILE_C
YCLE1~5). Fore more info, refer to CE A2 il i F XX 4-FA AL fEE FA A CctionF1 3R |
2. Opening (DBOPEN) and loading (DBLOAD) must be done before saving
(DBSAVE). If the user uses DBSAVE without using DBPEN and DBLOAD beforehand,
the saving process will NOT be executed.

3. Versions: 10.118.39 and later.

Function List - 25



Function

DBOPEN

DRAWHOLE

EXP

FLOOR

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Explanation

Load the specified XML. The XML should be in the GNCFILES specified by the user.
For related applications, please refer to the appendix.

Example:
DBOPEN("Test.cyc");
// Load GNCFILES\\Test.cyc
Example:
#1=51;
DBOPEN("FLAT\\\\AB#1[3]ZZ.cyc" );

// Load FLAT\\\\AB051ZZ.cyc, [3] indicates that the file nameisin
three valid digits

Notel: The file path to the XMLDB may be influenced by customized action
(CUSTOMFILE_CYCLE1~5), please refer to CE AN Z il N FAS 4.

Note2: For the requirement of reloading file, please reset system ( or run BGnd
Stop in Background Running Objects ) before re-execute DBOPEN.

Draw a circle based on the tool radius and the color defined by the SETDRAW
function at the current position (only valid in the simulation, system will not add a
circle in the actual path)

Calculate the exponential value with natural number as the base
Example:

#1:=EXP(1); // M1 =2.71828
Valid version: 10.116.16

Return the largest integer less than or equal to a certain value
Example:

#10:=1.4;

#1:= FLOOR(#10); // #1=1

#2 :=FLOOR(1.5); // #2=1

Function List - 26



Function

GETARG

GETTRAPARG

LN

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Explanation

Read the arguments passed by the caller

Example:
Assume that the main program content of 00001 is
G101 X30. Y40. Z1=40. Z2=50.;

The G0101 expansion macro program uses GETARG to read the argument
content

#1 := GETARG(X); // Save the X argument 30. to #1

#2 := GETARG(Z1); // Save the Z1 argument 40., to #2
#3 := GETARG(W);

// Since W does not exist, #3 is (VACANT, #0)

Read the argument content in Trap Block. Trap Block is the blocks between G66/
G66.1 and G67.

Example:
Assume that the main program content of 00001 is
G66 P100 X100. Y100. // P100 means call sub-program 00100.

GO01 X20. // 00100 sub-program uses GETTRAPARG to read the argument
content

#1 := GETARG(X);

// Save the X argument 100. to #1

#2 := GETTRAPARG(X);

// Save the X argument in the Trap block, 20. to #2
Please refer to G66/G67 : Call Modal Macro.

Calculate the logarithm value with natural number as the base.
Example:

#2:=LN(100); // In100 = 4.60517
Note: The argument has to be positive. Otherwise, the alarm shows up.

Valid version: 10.116.16

Function List - 27



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Function Explanation
MAX Get the maximum value of two input values
Example:
#10:=1.2;
#20:=4.5;

#1:= MAX(#10, #20); // #1=4.5
#2 = MAX(-1.2, -4.5); // #2=-1.2

MIN Get the minimum value of two input values
Example:
#10:=1.2;
#20:=4.5;
#1:= MIN(#10, #20); // #1=1.2
#2:= MIN(-1.2,-4.5); // #2 =-4.5

MSG Customize the message, please refer to the "MACRO Customized Message" for
details.

Example:
MSG(100); // message ID
MSG("bit lost"); // display message content
MSG(100, "bit lost"); // hint ID + displaye message content

Remark: There is limit of string length in a message. For Mandarin, it's 19 words ;
For English, it's 39 alphabets.

Function List - 28



Function

OPEN ("file name") or

OPEN ("file name",
"writing mode")

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Explanation

Open a text file name of which user specify, which is in the NcFiles folder ( Folder
path please refer the Pr3219). The PRINT function is valid only after the file is
opened.

If the file name is "COM", it means that the port RS232 is turned on, and its setting
is determined by Pr3905.

Example:

OPEN("COM"); // Open port RS232
PRINT("\\p"); // Output '%' character
FOR #1=1TO 5000 DO

#30:=#1*10,;

PRINT("GO1 X#30"); // Output GO1 X10.0
END_FOR;
PRINT("\\p"); // Output '%' character
CLOSE(); // Close port

The "writing mode" determines, when the file is opened, whether the original file
content is retained or cleared. (valid version: 10.116.36l)

(i) "a": Keep the original text and the text newly-output follows the original one.
Example:

OPEN("PROBE.NC", "a");

// Open PROBE.NC and keep the text, and be ready for text output
(ii) "w"/nothing: Clear the original text and output the new text in the file.
Example:

OPEN("PROBE.NC");

// Open PROBE.NC and clear the text, and be ready for text output

OPEN("PROBE.NC", "w");

// Open PROBE.NC and clear the text, and be ready for text output

(iii) Wrong writing mode: system issues alarm, COR-301 OPEN command format
error.

Example:
OPEN("PROBE.NC", "abc");

// Wrong writing mode, issues alarm, COR-301, so PROBE.NC is not opened
for text output.

(iv) Convert # or @ variable into a string, and the decimal digits is determined by
Pr17 (valid version: 10.118.12C)

Function List - 29



Function

PARAM

POP

POW

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Explanation

(v) Convert # or @ variable into a string with [*] in the end, and the decimal digits is
determined by this variable.

Read the contents of system parameters
Example:
#1 := PARAM(3204);
// Read the contents of Pr3204 (PLC scan time)

Taking the data in STACK from top layer to bottom layer in sequence. User must
pay attention to the total data in the stack. If there are 5 data, the maximum times
to use POP is 5.

Example:
PUSH(5); // Insert the number 5 into the stack
#1:= POP(); // Remove the topmost value in the stack (#1=5)

Calculate the power of specified base
Example:
#3:=POW(16,0.5); // 1610.5=4
Note: The base cannot be negative. Otherwise there will be alarm COR-122.

Valid version: 10.116.16

Function List - 30



Function

PRINT

PUSH

RANDOM

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Explanation

This function is used to output a string, and the variable in the output string will be
replaced by the content of it.

The character "\" is an escape character, and the related special characters are
defined as follows:

"\\": indicates "\" character
"\@": indicates "@" character
"\#":indicates "#" character
"\p": indicates"%" character

Convert # or @ variable into a string, and the decimal digits is determined by Pr17
(valid version: 10.118.12C)

Convert # or @ variable into a string with [*] in the end, and the decimal digits is
determined by this variable.

Example:

Assume that Pr17=2 in metric unit

@53=20;

#3=23.1234;

PRINT("GO1 X#3 Y@53 Z20.0") ;

The outputis GO1 X23.123 Y20 Z20.0; // Display to thousandths place
Example:

@53=20;

#3=23.1234;

PRINT("GO1 X#3[2] Y@53 Z20.0") ; // #3[2] means display to hundredths
place

The outputis GO1 X23.12 Y20 Z20.0; // Display to hundredths place

Stuff data into the STACK, the data PUSH into the controller first will be stacked on
the bottom layer, and the last data on the top one.

Example:

PUSH(#1); // Put variable #1 into the STACK

Generate a random number
Example:

#1 := RANDOM();

Function List - 31



Function

READDI
(I point number)
READDO

(O point number)

READABIT

(A point number)

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Explanation

The value of variable derives from the I/0 point number in the parentheses
READDI/READDO.

Example:
@52 := READDI(31); // Read the value of 131 and put itin @52
#88 := READDO(11); // Read the value of 011 and putitin #88

G90 G10 L1000 P4000 R READDI(15); // Read the value of 115 and putitin
R4000

Notes:

1. Valid version: 10.116.23

2. Thel/O pointisread during pre-interpreting, but it is processed when READDI /
READDO is executed in order to avoid the error resulting from pre-interpreting
I/0 point. Because system await until READDI / READDO is executed, machine
will decelerate to zero.

3. The range of I/O point number is 0~511. If the number is out of the range,

system issues alarm, COR-138 Read/write command format error at the I/O/A
point.

The value of variable derives from the A point number in the parentheses of
READBIT.

Example:
@52 := READABIT(31); // Read the value of A31 and putitin @52
#88 := READABIT(11); // Read the value of A11 and put it in #88
Notes:

1. Valid version: 10.116.44

2. The A pointis read during pre-interpreting, but it is processed when READBIT
is executed in order to avoid the error resulting from pre-interpreting A point.
Because system await until READBIT is executed, machine will decelerate to
zero.

3. The range of A point number is 0~511. If the number is out of the range, system
issues alarm, COR-138 Read/write command format error at the I/O/A point.

Function List - 32



Function
READRREGBIT

(Register number,
specified Bit)

ROUND

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Explanation

The value of variable derives from the register number and specified bit in the
parenthesis of the READRREGBIT.

Example:
@52 := READRREGBIT(31,3); // Read the value of the third bit of R31 and put
itin @52

Notes:

1. Valid version: 10.116.39

2. Theregisteris read during pre-interpreting, but it is processed when
READRREGBIT is executed in order to avoid the error resulting from pre-
interpreting Register. Because system await until READBIT is executed,
machine will decelerate to zero.

3. Ifregisteris less than 0 or greater than 65535, the system issues alarm,
COR-135 Read/write command format error for R value.

4. If registeris an incorrect character, system issues alarms, COR-5 Program
loading failure and COM-8 absent statement ending character ';'.

5. If specified bit is less than 0 or greater than 31, system issues alarm,
COR-135 Read/write command format error for R value.

6. If specified bit or both of register and specified bit is incorrect characters,
system issues alarm, COR-5 Program loading failure and COM-9 wrong
assignment character ":=".

Return a rounding value.
Example:

#10:=1.4;

#1:= ROUND(#10); // #1=1
#2:= ROUND(1.5); // #2=2

Function List - 33



Function

SCANTEXT

SETDO
(O point number,

0 point on or off)

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Explanation

This function is used to read the contents of the string stored in global variable.

When the string is stored in global variable, the controller translate it into ASCI|
first and save. User get wrong string if they output the value directly. To get the
correct string, please make good use of this function.

Example:
%@MACRO
@1:="12"; // 16 carry HEX=3231, 10 carry DEC=12849
#1:=SCANTEXT(1);
OPEN("NC");
PRINT("@1");
PRINT("#1");
CLOSE();
M30;
Theresultis @1 =12849
#1=12

Determine O point number and the state (1: On, 0: Off) with 2 numbers in the
parenthesis of SETDO.

Example:
SETDO(3, 1); // Set 03 on
SETDO(8, 0); // Set 08 off
Notes:

1. Valid version: 10.116.23

2. The writing of point O is in the interpolation stage, so it is not necessary to
decelerate to 0 during execution. However, in the MACRO processing in pre-
interpreting stage, the developer should decide whether to use WAIT, which
makes machine decelerate to 0.

3. Mixed use of PLC and SETDO should be avoided. For example, O1 is on by
SETDO in MACRO, but off in PLC. Even though the previous order is overridden
by the next one, it is common to confuse while using both, so it is
recommended that use one of them at a time.

4. The range of O point number is limited to 0~511. If the range is wrong, the
system issues alarm, COR-138 Read/write command format error at the I/O/A
point.

Function List - 34



Function

SETABIT
(point A, point A on or off)

SETRREGBIT

(Register number, Bit
number, on or off)

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Explanation

Determine A point number and the state (1: On, 0: Off) with 2 numbers in the
parenthesis of SETDO.

Example:
SETABIT(3, 1); // Set A3 on
SETABIT(8, 0); // Set A8 off
Notes:

1. Valid version: 10.116.44

2. The writing of point Ais in the interpolation stage, so it is not necessary to
decelerate to 0 during execution. However, in the MACRO processing in pre-
interpreting stage, the developer should decide whether to use WAIT, which
makes machine decelerate to 0.

3. Mixed use of PLC and SETABIT should be avoided. For example, Al is on by
SETABIT in MACRO, but off in PLC. Even though the previous order is
overridden by the next one, it is common to confuse while using both, so it is
recommended that use one of them at a time.

4. The range of A point number is limited to 0~511. If the range is wrong, the
system issues alarm, COR-138 Read/write command format error at the I/O/A
point.

Determine Register number, Bit number, and the state (1: On, 0: Off) with the 3
digits in the parenthesis of SETRREGBIT.

Example:
SETRREGBIT(50,3,1); // Set the third R50 Bit on
SETRREGBIT(50,4,0); // Set the fourth R50 Bit off
Notes:

1. Valid version: 10.116.39

2. The writing of Register is in the interpolation stage, so it is not necessary to
decelerate to 0 during execution. However, in the MACRO processing in pre-
interpreting stage, the developer should decide whether to use WAIT, which
makes machine decelerate to 0.

3. Mixed use of PLC and SETRREGBIT should be avoided. For example, first Bit of
R50 is on by SETRREGBIT in MACRO, but is off in PLC off. Even though the
previous order is overridden by the next one, it is common to confuse while
using both, so it is recommended that use one of them at a time.

4. If Register number is less than 0 or greater than 65535, the system issue alarm,
COR-135 Read/write command format error for R value.

5. If Bit number is less than 0 or greater than 31, system issues alarm,

COR-135 Read/write command format error for R value.

6. If the stateis not 0 (off) or 1 (on), system issues alarm, COR-135 Read/write
command format error for R value.

7. If any argument is incorrect character, system issues alarms, COR-5 Program
loading failure and COM-3 Syntax error.

Function List - 35



Function

SETDRAW (path color) or

SETDRAW (path color,
filled color, tool radius)

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Explanation

Define the drawing style of simulation:

1. Path Color: set the color of the outline, which can be set by RGB code or by
color code in "Simu. Setting."
2. Fill color: set the color filled in circle drawn by DRAWHOLE, which can be set by
RGB code or by color code in "Simu. Setting."
3. Toolradius: set the radius of circle drawn by DRAWHOLE, G code with tool
radius compensation, such as G01, is influenced by this as well.
Common RGB codes are as follows:

Color Setting:

AN ES EN R DlEm T a. v

Color Code RGB Color Code RGB

0 0 8 8421504

1 8388608 9 16711680

2 32768 10 65280

3 8421376 11 16776960

4 128 12 255

5 8388736 13 16711935

6 32896 14 65535

7 12632256 15 16777215
Note:

SETDRAW sets path color and filled color at the same time. If user would like to
make path color and filled color different, remember to change the path color with
SETDRAW after DRAWHOLE is executed.

Example:
%@MACRO
#3:=SETDRAW(#1,#2,#18);

// #3 records the original path color, #2 defines the filled color, #18 defines
the circle radius

DRAWHOLE();

Function List - 36



Function

SIGN

SIN

SLEEP

SQRT

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Explanation

SETDRAW(#3);
// Change the path color after drawing the circle
M99;

Return the sign of a value, the negative number is -1, the positive number is 1, and

0isO.

Example:
#10:=4;
#1:= SIGN(#10); // #1=1
#2:=SIGN(-4); // #2=-1
#3:=SIGN(0); //#3=0

Calculate the sine of a value
Example:
#10:=90;
#1:= SIN(#10); // #1=1
#2 := SIN(-90); // #2="-1

Temporarily abandon the execution right of this macro loop, generally used in
conjunction with the loop (FOR, WHILE..., etc.) to avoid entering the infinite loop,

which causes the human-machine to crash.
Example:

SLEEP();

Calculate the square root value of a value
Example:

#10:=4;

#1:= SQRT(#10); // #1=2

#2 := SQRT(9); // #2=3

Function List - 37



Function

STD (argumentl,
argument 2)

STDAX (argument 1,
argument 2)

STKTOP

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Explanation

According to Prl7, the value is converted into the input unit (Input Unit, 1U) set by
the system at that time.

1. The argument 1 is the value the unit of which is about to be changed.

2. The argument 2 is a standard unit. Generally, it is #1600, and value of #1600 is
from Pri7.

Metric Unit:

Example 1:

When Pr17=2, #1600 corresponds to LIU =0.001mm

#9:=100;

#10 := STD(#9,#1600); // #9 is 100 BLU, so #10 is 0.1mm (100*0.001)
Example 2:

When Pr17=3, #1600 corresponds to LIU =0.0001mm

#9:=100.;

#10 := STD(#9,#1600); // #9 is 100 BLU, so #10 is 0.01mm (100*0.0001)
Imperial:
Example 3:

When Pr17=2, #1600 corresponds to LIU =0.0001inch

#9:=100;

#10 := STD(#9,#1600); // #9 is 100 BLU, so #10 is 0.01inch (100*0.0001)

Converts the value to the standard unit of the corresponding axis.

The argument 1is a variable, and the argument 2 is the name of the corresponding
axis.

Example:
#24 := STDAX(#24,X);
#3 := STDAX(#3,A);

Copy the data in the STACK.

Example:
PUSH(5); //Put the number 5 into the stack
PUSH(6); //Put the number 6 into the stack
PUSH(7); //Put the number 7 into the stack
#1:= STKTOP[0] ; // #1=17
#2:= STKTOP[1]; // #2=6
#3:= STKTOP[2]; // #3 =5

Function List - 38



Function

SYSVAR

(Path identification code,
system variable code)

TAN

WAIT

CHKMN ("machinery
code")

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Explanation

Read the system variable in specific Path.
Path identification code: 1 is the first Path, 2 is the second Path, and so on.
System variable code: system variable number will be read
Example:
#1 := SYSVAR(1, 1000);
// Read the system variable #1000 in the first Path (interpolation mode)

Calculate the tangent of a value.
Example:
#10:=45;
#1:= TAN(#10); // #1=1
#2 :=TAN(-45); // #2=-1

The system stops pre-interpreting until the instruction before WAIT is finished.
Example:

%@MACRO

@50:=1;// @50 equalsto 1

G90 GO01 X100. F1000; // Assume to system is Reset at this time

WAIT();

@50:=0; // @50 equals to 0

M30;

Assume that the system is reset when GO1 is in execution. Since the block
before WAIT is not finished, @50 equals to 1 after Reset.

Check machinery code. 1: consistent, 0: does not match

Example:
%@MACRO
#51 := CHKMN("5566"); //The value of #51 is the checking result .
IF #51=0 THEN

ALARM(501, "The manufacturer code is invalid."); //If machinery code
does not match, system issues an alarm

END_IF;
Target version: 10.116.6A

Function List - 39



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Function Explanation

CHKSN ("Serial No.") Check Serial Number. 1: consistent, 0: does not match
Example:
%@MACRO
#52 := CHKSN("M9A0001"); //The value of #52 is the checking result
IF #52=0 THEN

ALARM(502, "The serial number isinvalid."); //If the serial
number does not match, system issues the alarm

END_IF;
Target version: 10.116.6A

CHKMT ("Machine Type") Check machine type. 1: consistent, 0: does not match
Example:
%@MACRO
#53 := CHKMT("MILL"); //The value of #53 is the check result
IF #53=0 THEN

ALARM(503, "The machine type is invalid."); //If machine type does
not match, system issues the alarm

END_IF;
Target version: 10.116.6A

CHKMI ("Model") Check the controller model, 1: consistent, 0: does not match

For SUPER series, please input 'S'. For other models, please input value according
to the actual model. For example, 10B =>10B, 11A, => 11A.

Example:
%@MACRO
#54 := CHKMI("S"); //#54 is the checking result
IF #54=0 THEN

ALARM(504, "The hardware type is invalid."); //If the model does not
match, system issues the alarm

END_IF;
Target version: 10.116.6A

Function List - 40



Function

CHKINF( category number,
Ilcodell)

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Explanation

Check if the code corresponds to the category number. 1: consistent, 0:
does not match

The range of category numbers is 1~5, each corresponding code is:

Machinery code

Serial No.

Machine Type

Model

. Industrial machine ID

For SUPER series, please input 's'. For other models, please input value according
to the actual model. For example, 10B =>10B, 11A, => 11A.

b

Example:

%@MACRO

#51 := CHKINF(1, "5566"); // #51 is the checking result

IF #51=0 THEN // If the machineny code does not match, system issues an
alarm

ALARM(501, "The manufacturer code is invalid.");

END_IF;

#52 := CHKINF(2, "M9A0001"); // #52 is the checking result

IF #52=0 THEN // If the serial No. does not match, system issues the alarm
ALARM(502, "The serial number is invalid.");

END_IF;

#53 := CHKINF(3, "MILL"); // #53 is the checking| result

IF #53=0 THEN // If the machine type does not match, system issue the
alarm

ALARM(503, "The machine type is invalid.");

END_IF;

#54 := CHKINF(4, "S"); // #54 is the checking result

IF #54=0 THEN // If the model does not match, system issues the alarm
ALARM(504, "The hardware type is invalid.");

END_IF;

#55 := CHKINF(5, "10"); // #55 is the checking result

IF #55=0 THEN // If the Industrial machine ID does not match, system issues
the alarm

ALARM(505, "The industrial machine ID is invalid.");

END_IF;

If argument is incorrect, or the category number is out of the range, system issues
the alarm, COR-353[Invalid argument of CHKINF)

Example:

%@MACRO

#51 := CHKINF(60, "Mill"); // category number is out of range
#51 := CHKINF("2", "Mill"); // argument 1 is incorrect

#53 := CHKINF(5, 12345); // argument 2 is incorrect

Target version: 10.118.22M_ 10.118.28B_ 10.118.30

Function List - 41



Function

STR2INT( "string" )

SYSDATA( system data
number)

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Explanation

Convert a numeric string into an integer

Example 1:

%@MACRO

@1:="5555";

#1:= SCANTEXT(1); // #1 = String 5555
#2:= STR2INT("#1"); // #2 = 5555

Example 2:

%@MACRO
#1:=STR2INT("100"); // #1 = 100

Example 3:

%@MACRO
#1:=STR2INT("123.456"); // #1 = 123

Note: As long as there is character or alphabet in the string, STR2INT is not able to

work.

Read the system data number.

EX:

Note:

// if want to get system data D336, D77

WAIT(); // stops pre-interpreting for getting newest value

#1 := SYSDATA(336); // Axis board data exchange time( D336 )

#2 := SYSDATA(77); // Free hardware memory(D77)
OPEN("DbgData.txt", "a"); // Open the file which name is "DbgData.txt"
PRINT("#1 #2"); // print data to file

CLOSE(); // close the file

1. Valid version: 10.118.23U, 10.118.28H, 10.118.33.

2. For getting newest value, it is recommended to use WAIT() function
blocking the pre-interpretation before using SYSDATAJ().

3. Thetype of argument must be integer. If the type of argument is incorrect, it
will cause function to operate abnormally.

4. if the argument number is out of range of system data number, system will
issues the alarm COR-016[Illegal variable access).

EX :

SYSDATA("77"); // the type of argument is string, issues the alarm COR-023
SYSDATA(77.0); // the type of argument must be integer , issues the alarm
COR-023

SYSDATA(DTT); // the argument is not a number, it cause syntax error, issue
the allarm COM-008

SYSDATA(10000); // the argument number is out of range of system data
number, issues the alarm COR-016

Function List - 42



Function

DRVDATA( station_numbe
r, status_variables_No(De

)

DRVDATA( station_numbe
r,
"status_variables_No(Hex)

")

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Explanation

Read Syntec drive status variables.
status variables No. has two input format.
Decimal: Convert variable numbers to decimal representation.

Hexadecimal:use format "xxxh", x=0~F, fill the status
variables number( 3 digit ) and end with 'h' or 'H'.

eg:
// assume want to get
// speed command( Pn-D26 ) of first axis ( station_number=1000)
// Enc Internal Temperature( Pn-D61) of first spindle
( station_number=1003)
WAIT(); // To get newest value, block Pre-Interpretation
#1 := DRVDATA(1000, 3366); // speed command of first axis ( Pn-D26, D26
convert to decimal format is 3366 )
#2 := DRVDATA(1003, "D61h"); // Enc Internal Temperature of first
spindle( Pn-D61, D61 convert to hexadecimal formatis "D61h")
OPEN("DbgData.txt", "a"); // open file DbgData.txt
PRINT("Pn-D26: #1, Pn-D26: #2"); // print value
CLOSE(); // close file

The file DbgData.txt content may be below.
Pn-D26: 150, Pn-D26: 430
Note:

1. Valid version: 10.118.23U,10.118.28.1,10.118.34.
2. For getting newest value, it is recommended to use WAIT() function
blocking the pre-interpretation before using DRVDATA().
3. The execution time of each function is 0.1~0.2s.
4. First argument must be integer, system will issues the alarm COR-023[
Semantic error).
5. If second argument is string type, must be hexadecimal format ("xxxh",
x=0~F), system will issues the alarm COR-023[Semantic error).
6. second argument must be string or integer value, system will issues the alarm
COM-003[Syntax error).
7. If either the drive or the controller does not support the specified status
variable, the system will issue the alarm COR-016[lllegal variable access].
8. Visit the "Controllor Axis Info." page to check status variable accessibility. Only
those shown are accessibile.
9. If the controller supports specified status variable and the drive does not
support, 0 will be returned.
10. If no drive corresponding to station number or using non Syntec M3
drive, return VACANT.
Example of wrong case :

// alarm COM-3
DRVDATA( 1003, D61h); // second argument must be string or integer value

Function List - 43



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Function Explanation

// alarm COR-023

DRVDATA( "1003", 3425 ); // first argument must be integer

DRVDATA( 1003, "G21h"); // if second argument is string type, must be
hexadecimal format ("xxxh", x=0~F)

DRVDATA( 1003, "3425" ); // if second argument is string type, must be
hexadecimal format ("xxxh", x=0~F)

DRVDATA( 1003, "0D61h" ); // if second argument is string type, must be
hexadecimal format ("xxxh", x=0~F)

// alarm COR-016
DRVDATA( 1003, "DFFh"); // drive is not suupot this status No.

// return VACANT

DRVDATA( 9999, "D61h" ); // no drive corresponding to station number
DRVDATA( 9999, "DFFh" ); // if no drive corresponding to station
number, will not check the status variables No.

Function List - 44



9 Call sub-Program

9.1 Calling Methods

Syntax Explanation

M98 P_H_ Call sub-program

P_Sub-program
Name

H_Starting of block
sequence No.

L_Repeated
Counts

M198 P_H_
L

(1fM198is
not logged
in Pr3601~)

Call sub-program

P_Sub-program
Name

H_Starting of

block sequence
No.

L_Repeated
Counts

G65P_L_ Call Single Macro

P_Subroutine
Name

L_Repeated
Counts

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Calling Local Variable

Type

Sub- Inherit the local variables #1~#400
program from main/parent program

Sub- Inherit the local variables #1~#400
program from main/parent program

Macro Create new local variables

#1~#400, and #1~#26 records the
corresponding argument in the
calling block

Example

M98 P10 L2;
Explanation:

Call 00010 twice

M198 P10 L2;
Explanation:

Call 00010 twice

G65 P10 Lw X10.0
Y10.0

Explanation:

Call 00010 twice, and
input argument

Call sub-Program - 45



Syntax

G66 P_L_

G66.1P_L_

Explanation

Use movement
instruction to call
mode macro

P_Subroutine
Name

L_Repeated
Counts

Each block calls
mode macro

P_Sub-program
Name

L_Repeated
Counts

Call expansion G
Code.

L_Repeated
Counts

Call customized G
Code

(G00, GO1, G2,
G03, G53, G40, G41,
G42)

Must login Pr3701~
before using.

Calling
Type

Mode
Macro

Mode
Macro

Macro

Macro

Local Variable

Create an independent section of
#1~#400 each time G66 is called.
Local variables in this section will
be shared until executing G67.
After executing G67, local variables
in this section will be retrieved and
cleared.

Note:

The local variables in the section
are shared with sub-program
called by P argument (G66 P) only.
They are different from the local
variables in the program where
G66/G66.1 is called.

The same as G66.

Create a new section of local
variables #1~#400 each calling,
and restore local variables in main
program when the Macro is
finished.

Create a new section of local
variables #1~#400 each

calling, and restoring local
variables in main program when
the Macro is finished.

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Example

G66 P10 X10.0 Y10.0;
X20.

Y20.

Explanation:

Moving instructions
X20. and Y20. call
00010, and input
arguments X10.0,
Y10.0.

G66.1 P10 X10.0
X20.

GO04 X2.

M30
Explanation:

Each block calls
00010 and input
argument X10.0.

G128 L3X1.0
Explanation:

Call G0128 three
times.

GO01A_B_C;
Explanation:

Call customized GO1.

Call sub-Program - 46



Syntax Explanation

T_ Call sub-program
T0000 to change
tool.

The T codein sub-
program is general
T code, which does
not call T0000.

M Call M code Macro.

The M code in the
macro is general M
code, which does
not call M code
macro again.

Must login Pr3601~
before using.

Notes:

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Calling
Type

If Pr3215=1,
thenitis
sub-
program.

If Pr3215=2,
thenitis
macro.

Macro

Local Variable

Inherit local variables #1~#400
from main program

Create a new section of local
variables #1~#400 each calling,
and restore local variables in main
program when the Macro is
finished.

Create a new section of local
variables #1~#400 each calling,
and restore local variables in main
program when the Macro is
finished.

« If Largument above isn’t assigned, the default value is 1.
« The life cycle of local vaiables (#1~#400) in above form, please refer to Macro Variable Specification.

Example of Variable Life Cycle:

Example

T3;
Explanation:

Call T0000.

M13A_B_C;
Explanation:

Call M0013 macro.

Call sub-Program - 47



Local variable is shared if

same color

Main Program
Test.NC

GO1...

GO1...

G65 P10 L2

HLFR 7= fB/Machine Tool Products - OpenCNC_Macro Development Manual.

00010 (First-time)
Local variableis
independentfrom
Test.NC

GO1...
GO03...
M98 P11 H50 L2

00011 (First-time)
Share local variable with
00010

G66 P12
GO1..:
GO02..:

G67

AN

M30 \

00010 (Second-time)
Local variableis
independentfrom
Test.NC

00011 (Second-time)
Keep Sharing local
variable with 00010

G66 P12
GO1...
GO2...
G67

00012 for GO1
Local variableis
independent from 00011

9.2 Return Methods

Return to main program.

number in main program

Return to the specified block sequence

P_: specified block sequence number.

P_: specified row number.

Syntax Explanation
M99
M99 P_
M99 Q_

program
G67 Cancel G66

Return to the sepcified row number in main

Example

M99

M99 P100;

00012 for GO2
Share local variable with
GO01 executed earlier

Return to N100 in the main program.

M99 Q100;

Return to row number, like 100, in the main

program.

G67;

Call sub-Program - 48




HLFR 7= fB/Machine Tool Products - OpenCNC_Macro Development Manual.

10 Variable Specification

For the explanation of # and @ variable, please refer to Macro Variable Specification.

Variable Specification - 49



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

11 MACRO Customized Alarm

11.1 MACRO Alarm Trigger Syntax
%@MACRO

ALARM(xxx);// xxx is the Alarm number
M30;

11.2 DOS System Alarm Content Editor Explanation

« File Path:
=>Traditional Chinese: C:\\CNC\\EXE\\APPDATA.RES\\CNCCHI.STR

=>English Version: C:\\CNC\\EXE\\APPDATA.RES\\CNCENG.STR
=> Others: C:\\CNC\\EXE\\APPDATA.RES\\CNCLOC.STR

« Content Format: 24xxx="1;MSG=Alarm Content”, xxx is the Alarm number. Please choose an unused
number as the customized alarm number, and please note the identification number is 24.

« Example:

=>CNCCHI.STR:

24003="1;MSG=max chordal length of arc should be smaller or equal to 0"
-> CNCENGSTR:

24003="1;MSG= max arc length can not be negative"

11.3 WinCE System Alarm Content Editor Explanation

+ File Path:

=>Chinese Version: DiskC\\OCRes\\CHT\\String\\AlarmMacro_CHT.Xml
=>English Version: DiskC\\OCRes\\Common\\String\\AlarmMacro_Com.Xml
=>General: DiskC\\OCRes{color:#0000ff}L\\String\\AlarmMacro_L.Xml.

L is the name of each language.
+ File Format: <Message ID="AlarmMsg::Macro:ID=xxx" Content="Alarm Content" />.
xxx is Alarm number. Please choose an unused number as the customized alarm number.

Please note that the identification letter is Macro. Length of string in alarm content is 48 alphabets in English,
or 31 characters in Chinese. Redundant string exceeds the alarm window.

« Example:

-> CusMacroAlarmMsg_CHT.Xml :
<Message ID="AlarmMsg::Macro::ID=3" Content="max chordal length of arc should be smaller or equal to
oll />

-> CusMacroAlarmMsg_Common.Xml :

<Message ID="AlarmMsg::Macro::ID=3" Content="max arc length can not be negative" />

MACRO Customized Alarm - 50



HLFR 7= fB/Machine Tool Products - OpenCNC_Macro Development Manual.

11.4 Edit Alarm String Through Sl (SyntecIDE)

MACRO alarm string editor is already integrated with SI, for related manual please refer to Macro Alarm String
Editor.

MACRO Customized Alarm - 51



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

12 MACRO Customized Message (MSG)

12.1 MSG Specification Explanation

« If MACRO alarm occurs, system must be reset to clear the alarm. While MSG is able to be cleared by clicking
“ESC”. MSG can be used for prompt simply. However, MSG vanishs when the program finishes.
« There s limit of string length of MSG. For Chinese, it's 19 characters; For English, it's 39 alphabets.

12.2 MSG Trigger Syntax

. MSG(100);// MSG ID
-

« MSG(“Missing Drill”);// Display MSG content
B

+ MSG(“100,Missing Drill”);// MSG ID + Display Content

-

MACRO Customized Message (MSG) - 52



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

13 Appendix
13.1 Macro User Guide

13.1.1 Preface

+ The built-in G, T, M code may not satisfy demand from all walks of life, so Syntec Corp. provides
"customizing macro" for customer.
Developer is able to, according to the machine properties, develop macros with special actions, which
greatly promotes the machine value.
« Before introduction, the methods of calling other programs in main program are as below:
« Call sub-program: execute sub-program, while reading or occupying argument is forbidden.
« Call macro: execute macro, while reading and occupying argument is allowed.
« For argument definition please refer to Argument Explanation.

+ The following sections introduces related specification of macro, and the specification of calling sub-
program will be skipped.

13.1.2 Macro Classification

+ All Macro has to meet the following conditions:
« Correct macro syntax
+ Program starts with %@MACRO.
« Each row(block) ends with " ;" (a semicolon).

+ No file extension.
+ Program ends with M99 to return to main program that calls the macro.

« Basically, macro can be categorized into following types
« G code macro
« Non-mode call G code (G65)
+ Mode G code (G66/G66.1)
« T code macro
« M code macro

Ty Characteris Enable File Name Specification File
pe tic Condition Name
Range

Appendix - 53



Co
de
Ma
cr

« Gcode
macro
develop
ed by
develop
er,
which is
known
as
expansi
onG
code
macro
andin
contrast
to
standar
dG
code.

None

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

+ The beginning of file name must be letter G.

+ No file extension

« The file name of expansion G code macro can be
separated into that with 4 digit number or 6 digit
number.

4 digit number 6 digit number

+ Without decimal digits in G code instruction.
+ All zeros starting from the largest digit of number can
be omitted.

Instruction  Filename Explanation

« G200 G0200 If there is no decimal

+ G0200 partin G code
instruction, then the File
name = G + four digit
number

4 digit number 6 digit number

+ With decimal digit in G code instruction.

+ Three digits starting from the left of number in file
name corresponds to the integer part of G code
instruction

+ Last three digits correspond to the decimal part of G
code instruction

+ All zeros starting from the largest digit of number can

be omitted.

Instruction Filename Explanation

G200.1 G200001 If there is decimal
partin G code

G200.001 instruction, then
the file name=G +s

G200.10 G200010 ix digit number

G200.010

G200.100 G200100

« G20
0~G
999

the
nu
mb
eris
out
of
the
ran
ge,
file

not
gua
rant
eed
to
wor

nor
mal

ly.

con
flict
wit

stan
dar
dG
cod

Appendix - 54



Call
assigne
d
progra
m
through
macro
Must be
the last
G code
in that
row.

None

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

The beginning of file name must be letter O.
No file extension.

- 000
00~

In file name, except O, other characters must be number. 099

Omit the O while calling.
+ E.g, for file name 00123, instruction is G65 P123.

99

the
nu
mb
eris
out
of
the
ran
ge,
file

not
gua
rant
eed
to
wor

nor
mal

Appendix - 55



od

co

de

66

G6
6.1

T < -

[0}

Effe
ct

Call
assi
gne

pro
gra

thro
ugh
mac
ro

whe

ever
bloc

with
mov
ing
instr
ucti
on

is
finis
hed.

None

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

The beginning of file name must be letter O.
No file extension.

- 000
00~

In file name, except O, other characters must be number. 099

Omit the O while calling.
+ E.g, for file name 00123, instruction is G65 P123.

99

the
nu
mb
eris
out
of
the
ran
ge,
file

not
gua
rant
eed
to
wor

nor
mal

Appendix - 56



Effe
ct

T < -

@

Call
assi
6 gne
. d
1 pro
gra
m
thro
ugh
mac
ro
whe
nev
ery
bloc
kis
finis
hed.

[e)]

e Mustbe
the last G
code in that
row.

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Appendix - 57



T Call T1000
Co filethrough
de  macro.

Ma

cr

o

Pr3215 Enable
T code call
mode must be
2.

o

e T
co
de
Su
ppl
em
ent
ary
co
de

es
not
cal

TO
00

1 o Cal

TO
00

thr
ou
gh
su
b-
pro
gra

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

« File name can only be T0000, other file names are not
allowed.
« No file extension.

T0000

Appendix - 58



Do
es
not
rea

an

occ
up

an

arg
um
ent

Cal

TO
00

thr
ou
gh
ma
cro

Re
ad

an

occ
up

an

arg
um
ent

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Appendix - 59



co
de
Ma
cr

Different
fromM
code, M
code macro
calls
correspondi
ng M code
macro file
through
macro.

+ Mcode
must be
logged in
Pr3601~361
0 "M code
MACRO call
registry".

+ Following
M code is
standard M
code and
can’t be
logged as M
code
macro.

M M M
0 3
0 o0 8

(e}

o
(e}
(e}

o
(o]

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

+ The beginning of file name must be letter M.

+ No file extension.

+ The file name must be "M+4 digit number". The 4 digit
number corresponds to M code macro instruction.

« Example

File Name Pr 3601 Calling Instruction
M0123 123 « M123
+ MO0123

13.1.3 Macro Operation Process Explanation

« M0OO
00~
M99
99

the
nu
mb
eris
out
of
the
ran
ge,
file

not
gua
rant
eed
to
wor

nor
mal

Next, G code macro is taken as example for introduction. Any difference of specification between G code
macro and other macros will be pointed out.

When G code is executed, actually the system is executing the content of G code macro.
Write "M99" in the last row of G code macro. After M99 is executed, system returns to main program and

keep processing.

Instruction in G code macro may change the system state. For example, G90/G91 in G code macro change

the G code mode.

+ Inorder to avoid influencing the main program or other macros/ sub-programs, usually, the G code
mode is backed up first while executing G code macro and restore it before leaving G code macro.

Example:

+ Execute G200 in main program, then execute G code macro G0200.
+ In G0200, backups G code mode first.

« Xcoordinate increase in increment of 10.

+ Restore G code mode before leaving.

Appendix - 60



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Example_Main

1 // Main

2 G90;

3 GO1 X10. F100.; // X Axis moving by GO1 result X=10.
4 G200; // X Axis moving by G200 result X=20.
5 X-20.; // X Axis moving by GO1 result X=-20.
6 M30;

Example_G0200

1 // GO200

2 %@MACRO

3 #101 := #1000; // Backup #1000, G00/G01/G02/G0O3/G33/G34/G35

4 #102 := #1004, // Backup #1004, G90/G91

5 G91 GOO X10.; // X coordinate increase in increment of 10 by
GOO. result X=20.;

6 G#101; // Restore #1000, G0OO/GO1/G02/GO3/G33/G34/G35

7 G#102; // Restore #1004, G90/G91

8 M99; // Return to main program

13.1.4 Introduction of Argument Usage

« Macro is able to execute the instructions designed by developers, from simple state-changing to
complicated multi-processing.
« If amacro only deals with one process at the same time, then developers have to write uncountable macros
for all sorts of situations.
« For example, the function of a macro is to cut 10*10 cm squares, if user wants to cut 20*20 cm squares then a
new macro is needed.
« This kind of macro is too inflexible. However, if the content is able to be adjusted through arguments, for
example, the edge of a square, then it is much more flexible in capability.
« Example:
+ Inmain program, system executes G201 to cut a 10*10 cm square.
« Inmain program, system executes G201 to cut a 2020 cm square.
+ In main program, system executes G202 to cut a square, length of edge of which is decided by
argument.

Example_Main

1 // Example002_Main
2 G90 GOO XO. YO.;

3 G200;

4 | G201;

5 G202 X30.;

6  M30;

Appendix - 61



Example_G0200

O owo~NOoOUubh WNBE

— e
- ®

// G0200
%@MACRO
#101:=#1000;
#102:=#1004;
G91 GOl X10.;
G91 GOl Y10.;
G91 GOl X-10.;
G91 GOl Y-10.;
G#101;

G#102;

M99;

Example_G0201

=
H O WOWoWLw~NOUubhWNKE

=

// G0201
%@MACRO
#101:=#1000;
#102:=#1004;
G91 GOl X20.;
G91 GOl Y20.;
G91 GOl X-20.;
G91 GOl Y-20.;
G#101;

G#102;

M99;

Example_G0202

0o~NOoOUh WN R

©

// G0202
%@MACRO
#101:=#1000;
#102:=#1004;
#103:=#24;

G91 GO1 X#103;
G91 GO1 Y#103;
G91 GO1 X-#103;
G91 GO1 Y-#103;
G#101;

G#102;

M99

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Appendix - 62



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

13.1.5 Arguments Explanation

« Arguments consist of 26 letters. Expect G/N/O, each letter has a corresponding local variable (# variable).
They are shown in the table below.

Argument # Argument # Argument #

A #1 J #5 S #19
B #2 K #6 T #20
C #3 L #12 u #21
D #7 M #13 v #22
E #8 N W #23
F #9 (0] X #24
G P #16 Y #25
H #11 Q #17 z #26
I #4 R #18

Instruction

Category Axis Argument Condition Argument Special Argument Exception

Argument

« Argument will be read and occupied by macro.
» “Read” means there is # variable to which corresponds to the argument in the macro, so the macro reads the

argument to start operation.

» “Occupied” means argument is not able to be read by other macro after it is read.
+ It doesn’t mean argument is occupied if it is read. The occupation depends on the macro characteristics.

Please refer to the next 2 sections, “Macro Explanation of process order” & “Macro Characteristics”.

+ It doesn't mean argument will not be occupied if it is not read. The occupation depends on the

characteristics of the argument. Please refer to the following introduction of this chapter.

« If there are repeated arguments in the same line, only the last argument is read, which means the next

argument override the previous one.

«+ Basically, argument is separated into categories as below:

Appendix - 63



Catego
ry

Axis
Argume
nt

Argume
nt

XYZ
ABC
IJK
Uvw

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Characteristic

As long as one of the arguments is
occupied by a macro, other axis
arguments are also occupied by that
macro.

Other Explanation

« Bcodeis defined by Pr3806 Second
auxiliary code

Pr380
6

Type

Axis
Argument

Auxiliary B
code

Explanation

Put value of B
code into R5

Appendix - 64



Catego
ry

Conditi
on
Argume
nt

Argume
nt

FSTDE
HPQR
M B

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Characteristic

Compared to axis argument, condition
argument is independent from each
other. If one of the condition argument
is occupied, only that one is occupied
instead of all condition arguments.

Oth

er Explanation

« Tcodeisdefined by Pr3215 Enable T

Pr
15

code call mode.

32 Type

T code
auxiliary
code

do notcall
TOO0O

Call To000
through sub-
program

Call T0o000
through
macro

Explanation

only put T code
value into #1036
and the
corresponding R
value

(each axis has
different
corresponding R
value)

do not accept
any argument.

Don’t regard as
macro.

accept
argument.

« Mcode is defined by Pr3601~3610 M code

Macro call registry

Pr3601~ Type

3610

No login M code

M code -
auxiliary
code

Login M M code

code macro

Explanation

only put M code
value into #1038
and the
corresponding R
value

(each axis has
different
corresponding R
value)

accept
argument.

Appendix - 65



Catego
ry

Special
Argume
nt

Excepti
on
Argume
nt

Argume

nt

GNO

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Characteristic Other Explanation

« Bcodeis defined by Pr3806 Second
auxiliary code

Pr380

6

L argument is setting up macro
repeated counts.

Type Explanation
Axis

Argument

B code put B code

axuiliary code  valueinto R5

T code macro do not read L code.

As a result, no matter what L code valueis, T

+ Forexample: G200 L10, it means code macro always execute once.

G200 will continuously execute ten
times.

+ Evenif the user doesn’tinput L
argument when calling the macro,
the system will automatically fill in
L=1 to let macro execute once.

These three letters is the keyword in the
controller syntax, so they are unable to

be used as argument. That's why there Type
are not corresponding # variables.

13.1.6 Interpreting Order of Macro

Explanation

Use as G code instruction or G
code macro.

Use as program flag

Head of file name of normal
processing program.

« Before explaining how macro reads and occupies arguments, user have to understand the interpreting order
of macro.
«+ System starts interpreting from the first row and it is no problem if there is only one macro/instruction in
each row.
« However, if there are several macro or instructions in a row, system interprets them according to the
interpreting order of macro.
Following table is the interpreting order of macro.

Appendix - 66



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Order Type Particulars Example
1 part of G code G code macro G73,G84, etc
Modal G code G15, G17, G70, etc
One-shot G code G65

The interpreting order of above instructions/macro
depends on the sequence of writing, from left to right.

2 macro M code macro
T code macro

The interpreting order of above instructions/macro
depends on the sequence of writing, from left to right.

3 S code

4 F code

5 H code

6 D code

7 T code

8 M code

9 B code

10 Function G code G04, G51, G68, etc
11 Interpolation G code G00, GO1, etc

« Normally, the interpreting order also represents the order of occupying argument, which means "the macro
interpreted first occupies the arguments first."
Nonetheless, this is not absolutely right, because the occupying order also depends on macro
characteristics.
Some macros are interpreted first but executed last. Hence, this situation does not comply to the rule,
"earlier interpreted, earlier occupying.”
« Example:
a. Function G code is interpreted earlier than interpolation G code is, so function G code occupies axis
argument first.
Even though interpolation G code is on the left to the function G code in the same block, function G
code still occupies axis argument earlier.
b. Intable above, interpreting order of both M code macro and T code macro are level 2,
which means if if T code and M code are in the same row,
interpreting order depends on the sequence, the code on the left is interpreted first.

Appendix - 67



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

13.1.7 Macro Characteristics

« When macro is reading occupied arguments, besides the basic operation explanation of argument above,
there are some characteristics which is briefly explained as below:

Condition  Character  Argument reading and occupation  Multi same code instruction in a row

Other command in macro

Category Activate Condition
G code and G code macro None
T code macro « Pr3215 Enable T code call mode. This parameter is set up as

2. After rebooting, system regard T code as T code macro.
« If T codeis considered T code macro, it only executes T code
macro if T argument (#20) is not occupied.

M code macro + Pr3601~3610 M code Macro call registry. M code is entered in
this section of parameter. After rebooting, system regard M
code as M code macro.

« If M code (#13) argument is occupied, M code macro do not
execute.

« If any axis argument is occupied, M code macro do not
execute.

Condition  Character  Argumentreading and occupation  Multi same code instruction in a row

Other command in macro

Category Character
G code and G code « Inherit Function
macro « Ifinterpolation mode (#1000) is updated, G code inherit value from it.

This is inherit function.
« Because of inherit function, as long as axis instruction is inputted, G code
is executed.
« Forexample : System activate X, Z axes
G98 G83 Z-40.0 R-5.0 P0.0 Q10.0 F1.5;
X-3.; // execute G83 X-3. again

Appendix - 68



Category

T code macro

M code macro

Condition  Character

Other command in macro

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Character

+ T code updates different variables according to the type of T code. Following are

corresponding updating rules.

T code condition update #1036 #20 R value
Macro (0] X X
Sub-program 0 X X
Auxiliary Code 0] X 0]
Argument X 0] X

If user want to capture T code value in a T code macro, please use T code
variable (#1036).

If user want to capture T code value in other macros, please use T argument
(#20).

Only when T code is auxiliary code, the corresponding R value of T code will be
updated. If T code is used as macro or argument, the corresponding R value of T
code is not updated.

M code updates different variable according to the type of M code. Following are
corresponding updating rules.

T code condition update #13 Rvalue
Macro 0 X
Auxiliary Code X 0
Argument O X

#13 is updated in M code macro or argument. Please note that this is different
from specification of T code.

Only when M code is auxiliary code, the corresponding R value of M code will be
updated. If M code is used as macro or argument, the corresponding R value of M
code is not updated.

Argument reading and occupation  Multi same code instruction in a row

Appendix - 69



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Category Argument reading and occupation
Gcodeand G + While executing G code macro, argument read by G code macro is occupied.
code macro « If axis argument is read, all axis arguments are occupied simultaneously.
« Modal G + It occupies all the argument except T code.
code
+ One-shotG
code
T code macro + While executing T code macro, system read arguments which are needed to. No
matter whether argument is occupied or not.
+ After executing T code macro, all arguments read by T code macro are occupied. If
axis argument is read, all axis arguments are occupied simultaneously.
+ Repeated count of T code macro is not defined by L code, and T code macro always
executes only one time.
+ The L code argument (#12) is not read by system, even if there is one in T code macro.
System just puts 1 into #12.
M code macro « After executing M code macro, system occupies all arguments which are read by M

Condition  Character

code macro.
+ If M code macro doesn’t read T argument, then after finishes executing M code
macro, T argument is not occupied.
+ If M code macro reads T argument, then after finishes executing M code macro,
T argument is occupied.

Argument reading and occupation  Multi same code instruction in a row

Other command in macro

Appendix - 70



< T o0wMm@M®~ o0 N

CN®3IMOO0ONAOAAASYM®AAO0ON®

O(\QJB(DD_OOH
-~

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Multi same code instruction in a row

+ Beinginterpreted from left to right

+ Only the last G code reads and occupies argument. G code in the front do not read or occupy any argument.

« The last G code can be sorted into situations as below

Category Explanation

+ G code macro Immediately

« Callmodal macro  G66 Immediately

G66.1 Immediately

+ Interpolation G Immediately
code

« Function G code

Read occupied argument

Read and occupy argument

Read and occupy argument

Read and occupy argument

No

Execution

Execute immediately

Do not execute immedia

System executes G code
instruction is finished.

Do not execute immedia

System executes G code
instruction is finished.

If other instructions in th
corresponding argument

« If multi T code macros are in the same row. Each T code is interpreted sequentially and each T code macro can read a

Appendix - 71



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Multi same code instruction in a row

< T o0M@M®m~oO N

« If multi M code macro are in the same row, only the first M code macro is interpreted.
+ Pr3810 Parallel executing multiple M code in one block is for auxiliary M code not M code macro. Hence, even if Pr381(

cnw3gmaonzx=

Condition  Character  Argument reading and occupation  Multi same code instruction in a row

Other command in macro

Category Command in macro

G code macro « Gcodein G code macro can be instruction or macro.
+ Mcodein G code macro can be auxiliary code or macro.
« Tcodein G code macro can be auxiliary code, macro or sub-
program.

T code macro + Gcodein T code macro can be instruction or macro.
+ Mcodein T code macro is only considered auxiliary code.
« TcodeinTcode macro is only considered auxiliary code.

M code macro + Gcodein M code macro can be instruction or macro.
+ Mcodein M code macro is only considered auxiliary code.
« Tcodein M code macro is only considered auxiliary code.

13.1.8 Macro Calling Example

+ In macro characteristics, many macro usage conditions have been mentioned. Next, example of macro
calling argument will be provided

« If Doesn’t especially mention any macro example. It is available to all macros.

01_Argument and program variable (local variable)

+ Except the exception argument (G,N,0), all arguments correspond to a # variable (local variable)

Appendix - 72



G0200

o ~NoO U WN R

// Main
G200 Al B2 C3 D7 E8 F9 H11 I4 J5 K6 L12 M13 P16 Q17 R18 S19 T20 U21
V22 W23 X24 Y25 Z26;

M30;

// GO200

%@MACRO

//Axis Argument
@le1 :

.

@102 :

@103

@104 :
@105 :
@106 :
@121 :
@122

@123

@124
@125
@126 :

#1;
#2;
#3;
#4
#5;
#6;
#21;
#22;
#23;
#24;
#25;
#26;

HLFR 7= fB/Machine Tool Products - OpenCNC_Macro Development Manual.

/1l
/1l
/1l
/1l
/1l
/1l
/1l
/1l
/1l
/1l
/1l
/1l

//Condition Argument
@107 :
@108 :
@109 :
@111 :

@113

@116 :
@117 :
@118 :
@119 :
@120 :

#7,

#8;

#9;

#11;
#13;
#16;
#17;
#18;
#19;
#20;

/1l
/1l
/1l
/1l
/1l
/1l
/1l
/1l
/1l
/1l

//Special Argument
@112 :

MOO;

[Display Global] and [Display Coord.]

WAIT();

M99;

#12;

/1l

N< X< CcCXuHO®m >

— W WO T XTI TmOoO

// Switch the screen to [Diag.] -

Appendix - 73



02_Repeated argument

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

+ Only the last repeated argument is read.
+ Because same argument put value into the same # variable, the last one overrides the previous one.

G0200

03_Axis argument and condition argument

w N

~N o 01 b

OO~ WNRE

// Main
GO1 X0.;

G200 X10. X-10.;

is read by G200

/1l

/1l
/1l
/1l
/1l

is occupied by G200

M30;

// G0200
%@MACRO

#100 := #1000;
#101 := #24;
GOl X#101;
MOO;

WAIT();

G#100;

M99;

/1
/1
/1

/1

X argument has been written twice, only X-10

#24 s dinput 10 by X10 first
then 1dinput -10 by X-10.

GOl will be executed after completing G200,
because GO1 can't read any argument X which

Backup interpolation mode
The #24 s -10.
Move to X-10.

Restore to interpolation mode

« All the axis arguments are occupied if one of them is occupied.
« Condition arguments are independent from each other.

Appendix - 74



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Main
1 // Main
2 GOl XO. YO. Z0O.;
3 G200 X10. Y20. Z30.; // Though G200 only reads X
argument
4 // Y, Z arguments are also
occupied
5 // GOl will be executed after
completing G200
6 // because GOl can't read any
argument which is occupied by G200
7 GOl XO0. YO. ZO. F100.;
8 G201 P20. X10. Y20. Z30. F200.; // Since G201 only reads P
argument
9 // X, Y, Z, F arguments are not
occupied
10 // GOl will be executed after
completing G201 and
11 // read X10. Y20. Z30. F200.
12 // , and then execute the
corresponding actions
13 | M30;
G0200
1 // GO200
2 9%@MACRO
3 @l:=#24; // Only reads X argument
4 | MOO;
5 WAIT();
6 M99;
G0201
1 // GO201
2 2%@MACRO
3 @l:=#16; // Only reads P argument
4 MOO;
5 WAIT();
6 M99

04_H code as a condition argument

+ H code is condition argument

Appendix - 75



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Main

// Main

GOl XO. YO. Z0O.;

G200 X10. Y20. Z30. H40.; // G200 only reads H argument
// H argument 1is a condition

A WDN B

argument

5 // GOl will be executed after
completing G200.

6 // GOl read and occupy X10. Y20.
Z30.

7 // and then execute the
corresponding actions

8  M30;

G0200

// GO200

%@MACRO

#101 := #11; // Only reads H argument
MOO;

WAIT();

M99;

o uUlh WN K

05_H code as an axis argument

« If Pr3809 "*Are UVW incremental command of XYZ axes" is set to 1,H code is not only an axis argument but
also a condition argument.

+ Nevertheless, H argument is regarded as condition argument and read in macro. Therefore, after completed
the execution of G code macro, the H argument is occupied again as an axis argument and system does the
corresponding action.

Appendix - 76



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Main
1 // Main
2 GOl XO. YO. Z0O.;
3 G200 X10. Y20. Z30. H40.; // G200 only reads H argument
4 // Since Pr3809=1, the H
argument 1is regarded as both axis argument and condition argument
5 // However, it is occupied as a
condition argument in MACRO
6 // GOl is executed after
completing G200
7 // GOl reads and occupies X10.
Y20. Z30. H40., and
8 // system executes the
corresponding action
9 // Since the axis argument of
H40. 1is not occupied, it is then occupied as an axis argument by
10 // GOl again.
11 M30;
G0200
1 // GO200
2 9%@MACRO
3 #101 := #11; // only reads H argument
4 | MOO;
5 WAIT();
6 M99;

+ When reading axis arguments in MACRO, all the axis arguments will be occupied if one of them is occupied.
+ As aresult, the axis argument of H argument is occupied as well.

Appendix - 77



G0200

A WN B

O wWNRE

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

// Main
GOl XO. YO. Z0O.;
G200 X10. Y20. Z30. H40.; // G200 only reads X argument

// Since Pr3809=1, the H
argument 1is regarded as both axis argument and condition argument

// The axis argument of H
argument 1is also occupied

// GOl will be executed after
completing G200

// GOl can't read any argument
since the axis arguments are all occupied by G200.

// The axis argument of the H
argument is also included and won't be read.
M30;

// GO200

9%@MACRO

#101 := #24; // Only reads X argument
MOO;

WAIT();

M99;

06_B code as an axis argument

« If Pr3806 Second auxiliary code is set to 0, B code is regarded as an axis argument.

A WN R

// Main
GOl XO0. YO. Z0O.;
G200 X10. Y20. Z30. B40.; // G200 only reads B argument

// Since Pr3806=0, B argument is
regarded as an axis argument

// X, Y, Z arguments 1is occupied
by G200

// GOl is executed after
completing G200

// and GO1 can't read any
argument since all arguments are occupied by G200
M30;

Appendix - 78



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

G0200

// G0200
%@MACRO
#101 :=
MOO;
WAIT();
M99;

#2;

o uUlh WN K

07_B code as a condition argument

// Only reads B argument

« If Pr3806 Second auxiliary code is set to 1, B code is regarded as a condition argument.

G200 only reads B argument
Since Pr3806=1, B argument -s

X, Y, Z arguments are not
GO1 is executed after
GOl reads and occupies X10.

executes the corresponding

Main

1 // Main

2 GOl X0. YO. Z0.;

3 G200 X10. Y20. Z30. B40.; //

4 /1
seen as a condition argument

5 /1
occupied by G200

6 /1
completing G200

7 /1
Y20. Z30., and

8 /1
actions

9 M30;

G0200

1 // G0200

2 %@MACRO

3 #101 := #2; // Only reads B argument

4 M0OO;

5 WAIT();

6  M99;

08_Multiple G code macros in the same line

« When multiple G codes are written in the same line, no matter G code command or G code macro, system

interprets all of them in order.

« However, only the G code macro written last reads and occupies arguments. The former G codes do not read

or occupy any argument even though they are interpreted first.

Appendix - 79



G200

N

10

11

(6] A WN

© O o~

HLFR 7= fB/Machine Tool Products - OpenCNC_Macro Development Manual.

Since 2 G code macros are written 1in

only the last G code macro is able to
Though G201 didn't read the X

G200 still can't read the X argument,
G201 is executed after completing

GOl is be executed after G201 read

GOl reads and occupies X10., and
then executes the corresponding

Backup interpolation mode
Read X argument which is unable to be

Since #101 has no value, this line

This 1line will be executed

Restore interpolation mode

// Main
GOl XO. YO. Z0O.;
G200 G201 X10. P20.; //
the same line
/1
read the argument
/1
argument
/1
because X argument is axis argument
/1
G200, and
/1
and occupied P argument
/1
/1
actions
M30;
// GO200
9%@MACRO
#100 := #1000; //
#101:=#24; //
read
GO1 X#101; //
won't be executed
GOl XO.; //
MOO;
WAIT();
G#100; //
M99;

Appendix - 80



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

G201

// GO201

%@MACRO

#100 := #1000, // Backup interpolation mode
#101:=#16; // Read P argument which is able to be
read

GO1 X#101; // This line will be executed
GOl XO.;

MOO;

WAIT();

G#100; // Restore 1dinterpolation mode
10 | M99;

A WDN B

O 00 ~N o U

09_G code instruction and G code macro in the same line

« When multiple G codes or G code macros are written in the same line, they are interpreted in order.
+ Only the G code macro written last can read and occupy arguments. Though the former G codes are
interpreted first, they do not read and occupy any argument.

Appendix - 81



(&) a pdh wN =

(0]

10
11

12
13

14
15
16
17
18
19

20
21

22

23

HLFR 7= fB/Machine Tool Products - OpenCNC_Macro Development Manual.

// Main
G90;
GOO XO0. YO. Z0.; // GOO, spindle moves to X0 YO Z0O
G200 GO1 X10. F100.; // Since 2 G codes are 1in the same line.
// only the last G code can read the
argument
// G200 is executed but no arguments are
read

// GO1 X10. F100. 1is executed after
completing G200

GOO XO0. YO. Z0.; // GOO, spindle moves to X0 YO Z0O
GO1 G201 X10. F100.; // Since 2 G codes are 1in the same line.

// GOl 1is 1dnterpreted first,
interpolation mode changes to GOL1.

// G201 dis 1dinterpreted secondly.

// In G201, system executes GOl X10.
F100.

// Since G201 reads and occupies the
axis argument, all the axis arguments are occupied.

// Therefore, there 1is no moving
instruction left for GO1l, so no movement.

GOO XO0. YO. Z0.; // GOO, spindle moves to X0 YO Z0O
GO1 G202 X10. F100.; // Since 2 G codes are 1in the same line
// GOl is explained first, interpolation
mode changes to GO1
// G202 1is 1dinterpreted secondely.
// In G202, no action is executed and no
arguments are read or occupied.
// Therefore, there are axis arguments
left for GO1l, so system executes GOl X10. F100.
M30;

Appendix - 82



10_T code macro

G200

G201

G202

A WN B

~N O

a ph wWwN =

~N O

aua P wWwN =

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

// GO200

%@MACRO

#100 := #1000, // Backup interpolation mode

#101 := #24; // Read X argument but it's unable to
read

G#100 X#101 F#9; // This 1line is not executed since #101

has no value. However, since #100=0, the interpolation mode changes
to GOO.

MOO;

WAIT();

M99;

// G0201

%@MACRO

#100 := #1000, // Backup interpolation mode

#101 := #24; // Read X argument and read X=10.
G#100 X#101 F#9; // Because #100 = 1, system executes
GO1.

MOO;

WAIT();

M99;

// 60202
%@MACRO
MOO;
WAIT();
M99;

Pr3215 Enable T code call mode is set to 2, TO000 is the T code macro.

« Executing T code macro if T argument is not occupied.
« #20 and R3 have no value, but #1036 shows the value of T code.

Appendix - 83



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Main
1 // Main
2 GOl XO. YO. Z0O.;
3 TO1l X10. Y20. Z30.; // T argument is not occupied and Pr3215=2,
so
4 // system executes T code macro
5 // With X argument being read in T code
macro,
6 // Y, Z arguments are occupied by T code
macro because all of them are axis arguments.
7 // GOl is executed after completing TOl
8 // GOl can't read any argument since the
arguments in the 1line are all occupied by T coda macro.
9  M30;
T0000
1 // TOOOO
2 2%@MACRO
3 #101 := #24; // only reads X argument
4 MOO; // Switch the screen to [Diag.] - [Display

Global] and [Display Coord.]

5 // Observe #20/#1036/#101
6 WAIT();
7 M99;

11_G code macro and T code macro in the same line

« Pr3215Enable T code call mode is set to 2, TO000 is the T code macro.

« When G code macro and T code macro are in the same line, G code macro is interpreted first then the T code
macro.

« Ifthe T code is occupied by G code macro then T code macro is not executed.

« Ifthe T code is not occupied by G code macro then T code macro is executed after G code macro is
completed.

+ Thereis only one T0000 in system, but in the example, there are two T code macros named after T0000_T01
and T0000_T02.

Appendix - 84



G0200

N

10

11

12

13

14

15

O wWNRE

HLFR 7= fB/Machine Tool Products - OpenCNC_Macro Development Manual.

// Main
GOl XO. YO. Z0O.;
TO1l G200 X10. Y20. Z30. F1000; // According to the

interpretation order, G code macro s 1interpreted first.

// There is a T argument read in
G code macro (G0200), so

// T argument 1is occupied and T
code macro is not executed.

// GOl is executed after
completing G code macro (G0200).

// GOl reads and occupies X10.
Y20. Z30. F1000, and

// executes the corresponding
actions

TO2 G201 X10. Y20. Z30. F1000.; // According to the
interpretation order, G code macro s 1interpreted first.

// There is no T argument read
in G code macro (G0201), so

// T argument is not occupied,
and

// T code macro is executed
after G code macro (G0201) 1is completed

// Because T02 reads all
arguments, GOl can't read any argument
M30;

// GO200

9%@MACRO

#101 := #20; // Only reads T argument
MOO;

WAIT();

M99;

Appendix - 85



T0000_01

G0201

O owo~NOoOUubh WNBE

=
@

11
12
13
14
15
16

A WN

o

HLFR 7= fB/Machine Tool Products - OpenCNC_Macro Development Manual.

// Not executing this process

// TOOOO

%@MACRO
#201 :=
#202 =
#101 :=
#102 :=
#103 :=
#104 :=
MOO;

Global]
WAIT();
G91 GO1

G#201;
G#202
M99;

// G0201

9%@MACRO
#101 :=
MOO;
Global]
WAIT();
M99;

#1000;
#1004,
#24;
#25;
#26;
#9;
// Switch the screen to [Diag.] - [Display
and [Display Coord.]

X#101 Y#102 Z#103 F#104;

#24; // Only reads X argument
// Switch the screen to [Diag.] - [Display
and [Display Coord.]

Appendix - 86



T0000_02

O owo~NOoOUubh WNBE

10

12
13
14
15

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

// TOOOO
%@MACRO

#201 := #1000,
#202 := #1004,
#101 := #24;
#102 := #25;
#103 := #26;

#104 := #9;
MOO; // Switch the screen to [Diag.] - [Display
Global] and [Display Coord.]

WAIT();

G91 GO1 X#101 Y#102 Z#103 F#104; // T code macro can still read

the arguments and execute the corresponding actions

G#201;
G#202
M99;

12_T code macro is not affected by L Argument

« Pr3215Enable T code call mode is set to 2, TO000 is the T code macro.
+ T code macro does not read or occupy L argument

T0000

~N~No b wN =

A WN R

o

// Main
GOl X0. YO. Z0.;
TO1l L2; // Though TOOOO reads #12,
// #12 ds equal to "1", not "2" given by L argument
// Execute GO1 after completed TO1
// GOl reads and occupies L2, and
// executes the corresponding actions (GO1 L2 -s
meaningless)
M30;

// TO000

2%@MACRO

#101 := #12; // Only reads L argument

MOO; // Switch the screen to [Diag.] - [Display
Global] and [Display Coord.]

WAIT();

M99;

Appendix - 87



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

13_Multiple T code macrosin a line

« Pr3215 Enable T code call mode is set to 2, TO000 is the T code macro.

« When multiple T code macros are written in the same line, T code is interpreted in order and every T code
macro can read the arguments.

« Thereis only one T0000 in system, but in the example, there are two T code macros named after T0O000_T01
and T0000_TO02.

Main
1 // Main
2 GOl XO. YO. Z0O.;
3 TO1l TO2 X10. Y20. Z30.; // This line is executed twice
4 // TO1l is executed first then T02
5 // Both T code read X, Y, Z arguments
successfully
6 // If there is any other macro going to
read X, Y, Z,
7 // 1t reads nothing since arguments are
already occupied by T code macro.
8 // GOl 1is executed after completing T02
with all argument occupied.
9  M30;
T0000_TO1
1 // TO000_TO1
2 %@MACRO
3 #100 := #1000; // Backup interpolation mode
4 #101 := #24; // Read X argument
5 #102 := #25; // Read Y argument
6 #103 := #26; // Read Z argument
7 IF #1036 = 1 THEN // TO1l - #1036=1
8 GO1 X#101; // X axis moving
9 GO1 X0.;
10 END_IF;
11
12 IF #1036 = 2 THEN // The section is not executed
13 GO1 Y#102;
14 GOl YO.;
15  END_IF;
16
17 MOO; // Switch the screen to [Diag.] - [Display
Global] and [Display Coord.]
18 WAIT();
19 G#100; // Restore interpolation mode
20 M99;

Appendix - 88



T0000_T02

coO~NOoOUl b WN B

18
19
20

14 _M code macro

// TOOOO_TO2

%@MACRO

#100 := #1000,
#101 := #24;
#102 := #25;
#103 := #26;

IF #1036 = 1 THEN
GOl X#101;
GOl XO.;
END_IF;

IF #1036 = 2 THEN
GOl Y#102;
GOl YO.;
END_IF;

MOO;

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

/1l
/1l
/1l
/1l
/1l

/1l
/1l

/1l

Backup
Read X

interpolation mode
argument

Read Y argument

Read Z argument

The section is not executed

TO2 - #1036=2
Y axis moving

Switch the screen to [Diag.] — [Display

Global] and [Display Coord.]

WAIT();
G#100;
M99;

/1l

Restore [dinterpolation mode

+ If Pr3601~3610 M code Macro call registry is set to 123, M0123 is registered as M code macro.

« If M code is registered as an M code macro, it is executed only when the M code and all the other axis
arguments are not occupied.

» While M code macro is executed, all the arguments are occupied except T.

« Margument (#13) is updated whether the M code is registered as M code macro or not.

+ The corresponding R value of M code is updated only if M code is regarded as auxiliary code. R value is not
updated if M code is regarded as macro or argument.

Appendix - 89



10
11

12

M0123

O oo~NOUhd WNBRE

10

12
13
14

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

// Main
GOl XO0. YO. ZO. F100.;
M123 X10. Y20. Z30. F300.; // No M argument and no axis argument s
occupied, so

// M code macro M0123 s executed.

// While M code macro is executed, aside
from the arguments read by the M code macro,

// all other arguments are occupied as
well except T argument.

// Though the F argument is not read by
M0123, it is occupied, then the feedrate 1is not updated.

// GO1l, executed after completing M123,

// can't read any argument since the
arguments are all occupied.

GOl X0. YO. Z0.; // The F in this line is F100, since the
argument 1in previous line is occupied by M code macro
M30;

// MO123

%@MACRO

#100 := #1000, // Backup interpolation mode

#101 := #24; // Read X argument

#102 := #25; // Read Y argument

#103 := #26; // Read Z argument

GOO X#101 Y#102 Z#103; // GOO moving along X, Y, Z axis
MOO;

WAIT(); // Switch the screen to [Diag.] -

[Display Global] and [Display Coord.]
// user should found #13=123
// Switch the screen to [PLC Status] -
[PLC Register]
// User should found R1=0
G#100; // Restore 1interpolation mode
M99;

15_G code macro and M code macro in the same line

« If Pr3601~3610 M code Macro call registry is set to 123, M0123 is registered as M code macro.
+ When G code macro and M code macro are written in the same line, G code macro is interpreted before M

code macro.

« If M codeis occupied, the M code macro is not executed.
« Onthe opposite, if M code is not occupied, the M code macro is executed after G code macro completed.
« All the arguments except T will be occupied after executing the M code macro.

Appendix - 90



HLFR 7= fB/Machine Tool Products - OpenCNC_Macro Development Manual.

Main
1 // Main
2 GOl XO. YO. Z0O.;
3 G1301 M1301 X10. Y20. Z30. P2 F1000.; // G code macro 1s
interpreted first.
4 // The M argument 1is read by
G code macro (G1301)
5 // The M argument 1is
regarded occupied, M code macro is executed.
6 // Since the X, Y, Z
arguments is not occupied by G code macro (G1301).
7 // GOl is executed after
completing the G code macro (G1301).
8 // GOl reads and occupies
X10. Y20. Z30. P2 F1000., and
9 // then executes the
corresponding instructions.
10
11 G1302 M1301 X10. Y20. Z30. F1000.; // G code macro 1s
interpreted first
12 // Only P argument is read
by G code macro (G1302)
13 // The M argument 1is
regarded unoccupied, and
14 // no other axis arguments
are occupied
15 // The M code macro 1s
executed after completing the G code macro (G1302)
16 // The M code macro (M1301)
do not read any argument,
17 // but all arguments except
T are regarded occupied after the M code macro is executed
18 // GO1l, executed after
completing the M code macro,
19 // can't read any argument
since the arguments are all occupied
20  M30;
G1301
1 // G1301
2 9%@MACRO
3 #101 := #13; // Only reads M argument
4 | MOO;
5 WAITQ);
6  M99;

Appendix - 91



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

M1301_01

// The program won't be executed
// M1301

%@MACRO

MOO;

WAIT();

M99;

o uUlh WN K

G1302

// G1302

%@MACRO

#101 := #16; // Only reads P argument
MOO;

WAIT();

M99;

o uUlh WN K

M1301_02

// M1301

2%@MACRO

MOO;

WAIT(); // The program does not read any argument
// but occupies all the arguments except T

oOuh wWNRE

M99;

16_G code macro and M code macro are in the same line, and G code macro reads and
occupies axis argument.

+ If Pr3601~3610 M code Macro call registry is set to 123, M0123 is registered as M code macro.

+ When G code macro and M code macro are written in the same line, G code macro is interpreted before M

code macro.
« If axis arguments are occupied by G code macro, M code macro is not executed.

Appendix - 92



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

Main
1 // Main
2 GOl XO. YO. Z0O.;
3 G200 M123 X10. Y20. Z30.; // G code macro is interpreted first
4 // Because X argument is read by G code
macro (G0200),
5 // all axis arguments are occupied by
G200.
6 // M code macro therefore is executed
since axis arguments are occupied.
7 // GO1, executed after completing G code
macro (G0200),
8 // can't read any argument since the
arguments in the 1line are all occupied
9  M30;
G0200
1 // GO200
2 %@MACRO
3 #101 := #24; // Only reads X argument
4 | MOO;
5 WAIT();
6  M99;
M0123
1 //This program won't be executed
2 // MO123
3 %@MACRO
4 #101 := #24;
5  Meo;
6 WAIT();
7 M99;

17_Multiple M code macrosin a line

« Pr3601issetto 123, and M0123 is registered as M code macro.
« Pr3602is set to 124, and M0124 is registered as M code macro.
« When multiple M codes macro are written in the same line, only the first M code macro is interpreted.

Appendix - 93



M0123

M0124

N

O oo~NOUhd WNBRE

10

12
13

~N~No b wNE

HLFR 7= fB/Machine Tool Products - OpenCNC_Macro Development Manual.

// Main
GOl XO. YO. Z0O.;
M123 M124 X10. Y20. Z30.; // M123 1ds -interpreted first, and only
M123 1is executed.

// X10. Y20. Z30. are read by M code
macro (M0123)

// All arguments except T are occupied
after executing the M code macro.

// GO1, executed after completing M code
macro,

// can't read any argument since the
arguments are all occupied.

M30;
// MO123

9%@MACRO

#100 := #1000, // Backup interpolation mode

#101 := #24; // Read X argument

#102 := #25; // Read Y argument

#103 := #26; // Read Z argument

GOO X#101 Y#102 Z#103; // GOO moving along X, Y, Z axis
MOO;

WAIT(); // Switch the screen to [Diag.] -

[Display Global] and [Display Coord.]
// User should found #13=124
// Since M124 1s regarded as an
argument, which overwrote #13
G#100; // Restore 1interpolation mode
M99;

// This program won't be executed
// MO124

%@MACRO

#101 := #24;

MOO;

WAIT();

M99;

Appendix - 94



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

18_T code macro and M code macro in the same line

« Pr3215issetto 2, T0000 is the T code macro

+ Pr3601 *M code Macro call registry is set to 123/124/125, M0123 / M0124 / M0125 are registered as M coed
macros

« If T code macro and M code macro are written in the same line, the macro on the left is interpreted first.

« Whether the macro on the right is executed or not is decided by the rules in previous section [Macro

Characteristics]
Main
1 // Main
2 GOl X0. YO. Z0.;

3 TO1 M1601 X10. Y20. Z30.; // According to the interpreting order,
TO1l s 1interpreted first, then M1601.

4 // No argument is occupied by T code
macro, so M code macro (M1601) executes X=10.

5 // Although M code macro (M1601) does
not read any argument,

6 // all the arguments except T are
occupied

7 // GO1, executed after completing M code
macro (M1601),

8 // can't read any argument since the

arguments are all occupied.

10 M1602 TO2 X10. Y20. Z30.; // According to the interpreting order,
M1602 s 1interpreted first.

11 // M code macro (M1602) does not reading
any argument.

12 // Because M code macro (M1602) occupies
all arguments except T,

13 // T code macro (TOOOO_02) 1is able to be
executed since T argument s not occupied by M code macro.

14 // GO1, executed after completing T code
macro,

15 // can't read any argument since the

arguments in the line are all occupied

16

17 M16603 TO3 X10. Y20. Z30.; // According to the interpreting order,
M1603 s 1interpreted first.

18 // M code macro (M1603) only reads the T
argument

19 // M code macro (M1603) will occupy all
the arguments after the execution, including T argument.

20 // Then, T code macro (TOOOO_03) 1is
executed since T code here is regarded as an argument.

21 // GOl can't read any argument since the
arguments in the line are all occupied.

22 M30;

Appendix - 95



T0000_01

M1601

0o ~NouhWNBE

10
11
12

o ~NoO U WN R

11
12

// TOO00
%@MACRO
#100 :=
#101 :=

#1000,
#1004,

G91 GOO X10.;

MOO;
Global]
WAIT();
G#100;
G#101;
M99;

// M1601
%@MACRO
#100 :=
#101 :=

#1000,
#1004,

G91 GOO Y10.;

MOO;
Global]
WAIT();
G#100;
G#101;
M99;

HLFR 7= fB/Machine Tool Products - OpenCNC_Macro Development Manual.

// Backup
// Backup

interpolation mode
absolute/increment command mode

// X axis moving in increment of 10.

// Switch the screen to [Diag.] - [Display

and [Display Coord.]

// Restore the dinterpolation mode
// Restore the absolute/increment command mode

// Backup interpolation mode
// Backup absolute/increment command mode

// Y axis moving in increment of 10.

// Switch the screen to [Diag.] - [Display

and [Display Coord.]

// Restore the interpolation mode
// Restore the absolute/increment command mode

Appendix - 96



M1602

0o ~NouhWNBE

10
11
12

T0000_02

o ~NoO U WN R

11
12

// M1602
%@MACRO
#100 := #1000;
#101 := #1004;

G91 GOO Y10.;

MOO;

HLFR 7= fB/Machine Tool Products - OpenCNC_Macro Development Manual.

// Backup interpolation mode
// Backup absolute/increment command mode

// Y axis moving in increment of 10.

// Switch the screen to [Diag.] - [Display

Global] and [Display Coord.]

WAIT();
G#100;
G#101;
M99;

// TOOOO
%@MACRO
#100 := #1000;
#101 := #1004;

G91 GOO X10.;

MOO;

// Restore the dinterpolation mode
// Restore the absolute/increment command mode

// Backup interpolation mode
// Backup absolute/increment command mode

// X axis moving in increment of 10.

// Switch the screen to [Diag.] - [Display

Global] and [Display Coord.]

WAIT();
G#100;
G#101;
M99;

// Restore the interpolation mode
// Restore the absolute/increment command mode

Appendix - 97



M1603

T0000_03

a pdh wN =

O 00 N O

10

12
13

O oo~NOUhd WNBRE

10

12
13

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

// M1603

%@MACRO

#100 := #1000, // Backup interpolation mode

#101 := #1004, // Backup absolute/increment command mode

#102 := #20; // Read data of #20, the line will occupy the T
argument

G91 GOO Y10.; // Y axis moving in increment of 10.

MOO; // Switch the screen to [Diag.] - [Display
Global] and [Display Coord.]

WAIT();

G#100; // Restore the dinterpolation mode

G#101; // Restore the absolute/increment command mode
M99;

// This program won't be executed

// TOOOO

9%@MACRO

#100 := #1000, // Backup interpolation mode

#101 := #1004, // Backup absolute/increment command mode
G91 GOO X10.; // X axis moving in increment of 10.

MOO; // Switch the screen to [Diag.] - [Display
Global] and [Display Coord.]

WAIT();

G#100; // Restore the interpolation mode

G#101; // Restore the absolute/increment command mode
M99;

19_One-shot macro calling (G65)

+ G65 executes the macro file assigned by the P argument

A WN R

// Main

GOl XO0. YO. Z0O.;

G65 P1 X10. Y20. Z30.; // Execute 00001
M30;

Appendix - 98



00001

0o ~NouhWNBE

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

// 00001
%@MACRO

#101
#102
#103
MOO;

1= #24
= #25;

#26;

WAIT();

M99;

20_Modal macro calling (G66)

+ G66 is executed every time a movement block is completed.

N =

G0200_01

A WN R

O 00 ~N o U»n

10

// Main

GO1 X-5. Y-5. Z-5.;

G200 G66 P1 X10. Y20. Z30. ; // G200 1in this line can't read X
argument

G200 X10.; // G200 1in this 1line can read X
argument

// There are 2 lines of GOl movement

blocks in G200

// G66 Pl X10. Y20. Z30. 1is executed

every time GOl movement block 1is finished.

G67;
M30;

// G0200_01
%@MACRO

#100
#101

1= #1000; // Backup interpolation mode
1= #24, // Executing G200 for the first time, G200 can't

read X argument, so
GO1 X#101; // this 1line 1is not executed.
GO1 X0.;

MOO;

WAIT();

G#100;

M99;

// Restore the dinterpolation mode

Appendix - 99



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

G0200_02
1 // G0200_02
2 %@MACRO
3 #100 := #1000, // Backup interpolation mode
4 #101 := #24; // Executing G200 for the second time, G200 1s
able to read X argument, so
5 GO1 X#101; // this line is executed
6 // This line 1is a movement block, after
finished, G66 P1 X10. Y20. Z30. is executed.
7 GO1 X0.; // This line 1is a movement block, after
finished, G66 P1 X10. Y20. Z30. is executed.
8  Moo;
9 WAIT();
10 G#100; // Restore the dinterpolation mode
11 M99;
00001
1 // 00001
2 9%@MACRO
3 #100 := #1000, // Backup interpolation mode
4 #1001 := #24;
5 #102 := #25;
6  #103 := #26;
7 G91 GO1 X#101 Y#102 Z#103;
8  Moo;
9 WAIT();
10 G#100; // Restore the interpolation mode
11 M99;

21_Non modal call macro (G66.1)

+ G66.1is executed every time after a block is completed.

Appendix - 100



HLFR 7= fB/Machine Tool Products - OpenCNC_Macro Development Manual.

Main
1 // Main
2 GOl X-5. Y-5. Z-5.;
3 G66.1 P1 X10. Y20. Z30. ;
4 G200 X10.; // G200 1in this 1line can read the X
argument
5 // G66.1 P1 X10. Y20. Z30. is executed
every time the block in G200 is executed.
6 G67; // G66 Pl X10. Y20. Z30. 1is executed
after this block is executed
7 M30;
G0200
1 // G0O200
2 9%@MACRO
3 #100 := #1000, // Backup interpolation mode
4 #101 := #24; // Executing G200 for the second time, G200 1s
able to read X argument
5 GO1 X#101; // This line is executed
6 // G66 Pl X10. Y20. Z30. 1is executed after this
block s executed
7 GO1 X0.; // G66 Pl X10. Y20. Z30. 1is executed after this
block s executed
8 MOO; // G66 Pl X10. Y20. Z30. 1is executed after this
block s executed
9 WAIT(); // This 1line 1is not a block
10 G#100; // Restore the interpolation mode
11 // G66 Pl X10. Y20. Z30. 1is executed after this
block s executed
12 M99 // G66 Pl X10. Y20. Z30. 1is executed after this

block is executed

Appendix - 101



00001

O owo~NOoOUubh WNBE

— e
- ®

12
13

#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

// 00001

%@MACRO

#100 := #1000, // Backup interpolation mode

#101 := #1004, // Backup absolute/increment command mode

#111 := #24;
#112 := #25;
#113 := #26;
G91 GO1 X#111 Y#112 Z#113;

MOO;

WAIT();

G#100; // Restore the dinterpolation mode

G#101; // Restore the absolute/increment command mode
M99;

22_G65 and G66/G66.1 must be the last G code in the line
» One-shot G code macro calling (G65) and modal G code macro calling (G66/G66.1) must be the last G code in

the line.

G0200

N =

)]

O ulh WN R

// Main
GOl X0. YO. Z0.;
G65 P1 X10. Y20. Z30. G200; // Alarm COR-013 shows up owing to wrong
syntax in this line, because
// G65 and G200 are 1in the same line
// but G65 is not the last G code.
M30;

// GO200
%@MACRO
#101 := #24;
MOO;

WAIT();

M99

Appendix - 102



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

00001

// 00001
%@MACRO
#101 := #24;
#102 := #25;
#103 := #26;
MOO;

WAIT();

M99;

0o ~NouhWNBE

13.2 MACRO XML Data Application

« MACRO is able to read xml files with special functions, which, respectively, are DBLOAD and DBOPEN.
DBOPEN is used to load xml file and DBLOAD is used to read the data content.

+ Application example : Following is a customized HMI, which automatically produces xml file recording the
related machining data. The content of the xml file will be read and taken as reference when planning
movements in macro afterwards.

Rt | feEanl] | FIEEAE ‘ ELSED | 180 |7‘5rn‘1 -|Mﬁ | -4 ﬂ FERE -,E
K T

No \ X EE Y AR LER | ALY | BER | CTY | R FERE
” 0.00 1763 1298 | 267.54
” 226 21.34 1320 | 30087
” 2.26 91.19 1320 | 44329
” 0.00 2155 1298 | 11695
” £.05 21.16 1298 | 15000

->The customized HMI first outputs the the user-defined contents to an xml file, and save the xml file to
the GNCFILES file path of which is assigned by user (refer to Pr3219).

The syntax format is defined as below, :

<?xml version="1.0" encoding="UTF-16"?>
<CycleFile>

<Cycle Name="Cycle_HerdonProg"> — The beginning of first data

<Field Name="Col_Y" Value="17.63"/>
<Field Name="Col_Z" Value="12.98"/>
<Field Name="Col_X" Value="0.00"/>
<Field Name="Col_A" Value="267.54"/>

</Cycle> — The end of first data
<Cycle Name="Cycle_HerdonProg"> — The beginning of second data

Appendix - 103



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

<Field Name="Col_Y" Value="21.34"/>
<Field Name="Col_Z" Value="13.20"/>
<Field Name="Col_X" Value="2.26"/>
<Field Name="Col_A" Value="300.87"/>

</Cycle> — The end of second data
<Cycle Name="Cycle_HerdonProg"> — The beginning of third data

<Field Name="Col_Y" Value="91.19"/>
<Field Name="Col_Z" Value="13.20"/>
<Field Name="Col_X" Value="2.26"/>
<Field Name="Col_A" Value="443.29"/>

</Cycle> — The end of third data
<Cycle Name="Cycle_HerdonProg"> — The beginning of fourth data

<Field Name="Col_Y" Value="21.55"/>
<Field Name="Col_Z" Value="12.98"/>
<Field Name="Col_X" Value="0.00"/>
<Field Name="Col_A" Value="116.95"/>

</Cycle> ~ The end of fourth data
<Cycle Name="Cycle_HerdonProg"> — The beginning of fifth data

<Field Name="Col_Y" Value="21.16"/>
<Field Name="Col_Z" Value="12.98"/>
<Field Name="Col_X" Value="-6.05"/>
<Field Name="Col_A" Value="150.00"/>

</Cycle> ~ The end of fifth data
</CycleFile>

-> User have to write the configuration file of XML file by their own.

Configuration file( schema file ) defines the data to be read and the variable where data is put while
DBLOAD is used.

The syntax format is defined as below, and the configuration file should be saved in OCRes\\Common\
\Schema\\

If Dipole is enable, the schema file should be in the folder OCRes\\Common\\Schema\\ in controller.

<?xmlversion="1.0" encoding="UTF-16"?>
<Schema>

<Cycle name="Cycle_HerdonProg">
<Field>

<Name>Col_X</Name>

<InputStorage>@1200</InputStorage> — The variable Col_X saves in
<InputFormat>Variant</InputFormat>
<DefaultValue></DefaultValue>

</Field>
<Field>

<Name>Col_Y</Name>
<InputStorage>@1201</InputStorage> — The variable Col_Y saves in

Appendix - 104



#LEK 7= &a/Machine Tool Products - OpenCNC_Macro Development Manual.

<InputFormat>Variant</InputFormat>
<DefaultValue></DefaultValue>

</Field>
<Field>

<Name>Col_Z</Name>

<InputStorage>@1202</InputStorage> — The variable Col_Z saves in
<InputFormat>Variant</InputFormat>
<DefaultValue></DefaultValue>

</Field>
<Field>

<Name>Col_A</Name>

<InputStorage>@1203</InputStorage> — The variable Col_A saves in
<InputFormat>Variant</InputFormat>
<DefaultValue></DefaultValue>

</Field>
<Field>

<Name>Col_B</Name>

<InputStorage>@1204</InputStorage> — The variable Col_B saves in
<InputFormat>Variant</InputFormat>
<DefaultValue></DefaultValue>

</Field>

<Field>
<Name>Col_C</Name>
<InputStorage>@1205</InputStorage> — The variable Col_C saves in
<InputFormat>Variant</InputFormat>
<DefaultValue></DefaultValue>

</Field>
</Cycle>

</Schema>

->MACRO example

// Load GNCFILES\\Number of test data, total 5 data, therefore @1:=5;
@1:=DBOPEN("Test");

// Load the first data, DBLOAD argument is 0
// @1200=0.00 @1201=17.63 @1202=12.98 @1203=267.54
DBLOAD(0);

// Load the second data, DBLOAD argument is 1
/] @1200=2.26 @1201=21.34 @1202=13.20 @1203=300.87
DBLOAD(1);

Appendix - 105



	Preface
	File Format
	Block Format
	Operator
	Language Instructions
	Variable Designation
	GOTO
	CASE
	IF
	Repeat
	While
	For
	EXIT
	Program Annotation
	Area of Execution Program

	MACRO Read/Process Flow
	MACRO Writing Note 
	Login G Code MACRO

	Function List
	Call sub-Program
	Calling Methods
	 Return Methods

	Variable Specification
	MACRO Customized Alarm
	MACRO Alarm Trigger Syntax
	DOS System Alarm Content Editor Explanation
	WinCE System Alarm Content Editor Explanation
	Edit Alarm String Through SI (SyntecIDE)

	MACRO Customized Message (MSG) 
	MSG Specification Explanation
	MSG Trigger Syntax

	Appendix
	Macro User Guide
	Preface
	Macro Classification
	Macro Operation Process Explanation
	Introduction of Argument Usage
	Arguments Explanation 
	Interpreting Order of Macro
	Macro Characteristics
	Macro Calling Example

	MACRO XML Data Application


